Ziding Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843733/publications.pdf

Version: 2024-02-01

87888 79698 6,550 141 38 73 citations g-index h-index papers 149 149 149 8919 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 2020, 583, 286-289.	27.8	599
2	SRAMP: prediction of mammalian N ⁶ -methyladenosine (m ⁶ A) sites based on sequence-derived features. Nucleic Acids Research, 2016, 44, e91-e91.	14.5	560
3	Toxicity of Ionic Liquids. Clean - Soil, Air, Water, 2007, 35, 42-48.	1.1	499
4	<i>Badh2</i> , Encoding Betaine Aldehyde Dehydrogenase, Inhibits the Biosynthesis of 2-Acetyl-1-Pyrroline, a Major Component in Rice Fragrance. Plant Cell, 2008, 20, 1850-1861.	6.6	267
5	Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus Magnaporthe oryzae. PLoS Genetics, 2012, 8, e1002869.	3.5	167
6	Prediction of Ubiquitination Sites by Using the Composition of k-Spaced Amino Acid Pairs. PLoS ONE, 2011, 6, e22930.	2.5	162
7	Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC Bioinformatics, 2008, 9, 101.	2.6	143
8	The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity. PLoS Genetics, 2009, 5 , e1000785.	3.5	141
9	MDP25, A Novel Calcium Regulatory Protein, Mediates Hypocotyl Cell Elongation by Destabilizing Cortical Microtubules in <i>Arabidopsis</i> A Â Â. Plant Cell, 2011, 23, 4411-4427.	6.6	106
10	Prediction of human-virus protein-protein interactions through a sequence embedding-based machine learning method. Computational and Structural Biotechnology Journal, 2020, 18, 153-161.	4.1	98
11	hCKSAAP_UbSite: Improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1461-1467.	2.3	97
12	AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis. Plant Physiology, 2016, 170, 2264-2277.	4.8	96
13	Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microbial Cell Factories, 2011, 10, S16.	4.0	84
14	Binding specificity of locust odorant binding protein and its key binding site for initial recognition of alcohols. Insect Biochemistry and Molecular Biology, 2009, 39, 440-447.	2.7	80
15	Interaction of Positional Isomers of Quercetin Glucuronides with the Transporter ABCC2 (cMOAT,) Tj ETQq1 1 C).78 <u>43</u> 14 r	gBT/Overlock
16	The prediction of protein-protein interaction networks in rice blast fungus. BMC Genomics, 2008, 9, 519.	2.8	77
17	Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features. Briefings in Bioinformatics, 2015, 16, 640-657.	6.5	76
18	Polysaccharide-Induced Order-to-Order Transitions in Lyotropic Liquid Crystals. Langmuir, 2005, 21, 6165-6169.	3.5	73

#	Article	IF	CITATIONS
19	PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Scientific Reports, 2017, 7, 6862.	3.3	72
20	Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features. Scientific Reports, 2014, 4, 5765.	3. 3	71
21	Characterization of the Serpin-Encoding Gene of <i>Bifidobacterium breve</i> 210B. Applied and Environmental Microbiology, 2010, 76, 3206-3219.	3.1	66
22	Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, <i>Adelphocoris lineolatus</i> (GOEZE). Archives of Insect Biochemistry and Physiology, 2011, 77, 81-99.	1.5	66
23	Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs. PLoS ONE, 2015, 10, e0129635.	2.5	65
24	Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune Responses by Integrative Analysis. Plant Physiology, 2015, 167, 1186-1203.	4.8	62
25	<i>Ornithorhynchus anatinus</i> (Platypus) Links the Evolution of Immunoglobulin Genes in Eutherian Mammals and Nonmammalian Tetrapods. Journal of Immunology, 2009, 183, 3285-3293.	0.8	59
26	GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Engineering, Design and Selection, 2007, 20, 405-412.	2.1	56
27	BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav064.	3.0	56
28	Exploiting Bifidobacterium genomes: The molecular basis of stress response. International Journal of Food Microbiology, 2007, 120, 13-24.	4.7	55
29	Molecular Characterization of hsp20, Encoding a Small Heat Shock Protein of Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2007, 73, 4695-4703.	3.1	51
30	Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genetics, 2018, 14, e1007428.	3. 5	50
31	How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiology Reviews, 2006, 30, 734-759.	8.6	48
32	HVIDB: a comprehensive database for human–virus protein–protein interactions. Briefings in Bioinformatics, 2021, 22, 832-844.	6.5	48
33	Critical assessment and performance improvement of plant–pathogen protein–protein interaction prediction methods. Briefings in Bioinformatics, 2019, 20, 274-287.	6.5	47
34	Prediction of protein (domain) structural classes based on amino-acid index. FEBS Journal, 1999, 266, 1043-1049.	0.2	46
35	Similarity networks of protein binding sites. Proteins: Structure, Function and Bioinformatics, 2005, 62, 470-478.	2,6	46
36	Understanding Human-Virus Protein-Protein Interactions Using a Human Protein Complex-Based Analysis Framework. MSystems, 2019, 4, .	3.8	42

3

#	Article	IF	CITATION
37	The ClgR Protein Regulates Transcription of the clpP Operon in Bifidobacterium breve UCC 2003. Journal of Bacteriology, 2005, 187, 8411-8426.	2.2	41
38	Crystal structure of the Locusta migratoria odorant binding protein. Biochemical and Biophysical Research Communications, 2015, 456, 737-742.	2.1	41
39	The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction. Microbiology (United Kingdom), 2005, 151, 2861-2872.	1.8	40
40	Predicting Residue-Residue Contacts and Helix-Helix Interactions in Transmembrane Proteins Using an Integrative Feature-Based Random Forest Approach. PLoS ONE, 2011, 6, e26767.	2.5	39
41	MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of <i>Sinorhizobium fredii</i> in Soybean Nodules. Molecular Plant-Microbe Interactions, 2016, 29, 352-361.	2.6	39
42	Machine-Learning-Based Predictor of Human–Bacteria Protein–Protein Interactions by Incorporating Comprehensive Host-Network Properties. Journal of Proteome Research, 2019, 18, 2195-2205.	3.7	39
43	An improved prediction of catalytic residues in enzyme structures. Protein Engineering, Design and Selection, 2008, 21, 295-302.	2.1	38
44	Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii and Botrytis cinerea Infections. Scientific Reports, 2016, 6, 19149.	3.3	37
45	Prediction of protein–protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids, 2012, 42, 2363-2371.	2.7	36
46	Using Weakly Conserved Motifs Hidden in Secretion Signals to Identify Type-III Effectors from Bacterial Pathogen Genomes. PLoS ONE, 2013, 8, e56632.	2.5	36
47	Crysalis: an integrated server for computational analysis and design of protein crystallization. Scientific Reports, 2016, 6, 21383.	3.3	35
48	Cyanidin-3-o-glucoside directly binds to $\mathrm{ER}\hat{l}\pm36$ and inhibits EGFR-positive triple-negative breast cancer. Oncotarget, 2016, 7, 68864-68882.	1.8	34
49	Descriptor-based protein remote homology identification. Protein Science, 2005, 14, 431-444.	7.6	33
50	ZincExplorer: an accurate hybrid method to improve the prediction of zinc-binding sites from protein sequences. Molecular BioSystems, 2013, 9, 2213.	2.9	33
51	Transfer learning via multi-scale convolutional neural layers for human–virus protein–protein interaction prediction. Bioinformatics, 2021, 37, 4771-4778.	4.1	33
52	Computational Studies of Ligand-Receptor Interactions in Bitter Taste Receptors. Journal of Receptor and Signal Transduction Research, 2006, 26, 611-630.	2.5	32
53	A New Approach to Predict the Helix/Strand Content of Globular Proteins. Journal of Theoretical Biology, 2001, 208, 65-78.	1.7	31
54	Prediction of the helix/strand content of globular proteins based on their primary sequences. Protein Engineering, Design and Selection, 1998, 11, 971-979.	2.1	30

#	Article	IF	CITATIONS
55	DescFold: A web server for protein fold recognition. BMC Bioinformatics, 2009, 10, 416.	2.6	30
56	A new class of anti-thrombosis hexahydropyrazino- $[1\hat{a}\in^2,2\hat{a}\in^2:1,6]$ pyrido- $[3,4-b]$ -indole- $1,4$ -dions: Design, synthesis, logK determination, and QSAR analysis. Bioorganic and Medicinal Chemistry, 2007, 15, 5672-5693.	3.0	29
57	A predicted protein–protein interaction network of the filamentous fungus Neurospora crassa. Molecular BioSystems, 2011, 7, 2278.	2.9	29
58	Functional Characteristics of a Novel Chemosensory Protein in the Cotton Bollworm Helicoverpa armigera (Hübner). Journal of Integrative Agriculture, 2013, 12, 853-861.	3.5	29
59	Prediction of the secondary structure content of globular proteins based on structural classes. The Protein Journal, 1996, 15, 775-786.	1.1	28
60	Can simple codon pair usage predict protein–protein interaction?. Molecular BioSystems, 2012, 8, 1396.	2.9	28
61	PredPPCrys: Accurate Prediction of Sequence Cloning, Protein Production, Purification and Crystallization Propensity from Protein Sequences Using Multi-Step Heterogeneous Feature Fusion and Selection. PLoS ONE, 2014, 9, e105902.	2.5	27
62	Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nature Communications, 2021, 12, 5932.	12.8	27
63	Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Computational and Structural Biotechnology Journal, 2022, 20, 459-470.	4.1	27
64	Title is missing!. Biotechnology Letters, 1999, 13, 781-786.	0.5	26
65	Studies on logP, retention time and QSAR of 2-substituted phenylnitronyl nitroxides as free radical scavengers. European Journal of Medicinal Chemistry, 2007, 42, 955-965.	5.5	26
66	Prediction of the secondary structure contents of globular proteins based on three structural classes. The Protein Journal, 1998, 17, 261-272.	1.1	25
67	N-[2-(5,5-Dimethyl-1,3-dioxane-2-yl)ethyl]amino acids: Their synthesis, anti-inflammatory evaluation and QSAR analysis. European Journal of Medicinal Chemistry, 2008, 43, 8-18.	5 . 5	25
68	SPAR: a random forest-based predictor for self-interacting proteins with fine-grained domain information. Amino Acids, 2016, 48, 1655-1665.	2.7	25
69	Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection. Scientific Reports, 2016, 6, 35064.	3.3	25
70	PlaPPISite: a comprehensive resource for plant protein-protein interaction sites. BMC Plant Biology, 2020, 20, 61.	3.6	25
71	Deciphering the Arabidopsis Floral Transition Process by Integrating a Protein-Protein Interaction Network and Gene Expression Data Â. Plant Physiology, 2010, 153, 1492-1505.	4.8	24
72	An Integrative Computational Framework Based on a Two-Step Random Forest Algorithm Improves Prediction of Zinc-Binding Sites in Proteins. PLoS ONE, 2012, 7, e49716.	2.5	24

#	Article	IF	Citations
73	Network Analysis Reveals a Common Host–Pathogen Interaction Pattern in Arabidopsis Immune Responses. Frontiers in Plant Science, 2017, 8, 893.	3.6	24
74	MAPanalyzer: a novel online tool for analyzing microtubule-associated proteins. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	23
7 5	Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks. Frontiers of Agricultural Science and Engineering, 2016, 3, 102.	1.4	23
76	Transcriptome analysis reveals physiological characteristics required for magnetosome formation in <i>Magnetospirillum gryphiswaldense</i> MSRâ€1. Environmental Microbiology Reports, 2016, 8, 371-381.	2.4	22
77	Pathogenicity Genes in <i>Ustilaginoidea virens</i> Revealed by a Predicted Protein–Protein Interaction Network. Journal of Proteome Research, 2017, 16, 1193-1206.	3.7	22
78	COMPUTATIONAL ENZYME DESIGN APPROACHES WITH SIGNIFICANT BIOLOGICAL OUTCOMES: PROGRESS AND CHALLENGES. Computational and Structural Biotechnology Journal, 2012, 2, e201209007.	4.1	21
79	Prediction of protein–protein interactions between fungus (Magnaporthe grisea) and rice (Oryza) Tj ETQq1 1	0.784314 6.5	rgBT /Overlo
80	Prediction of Protein Ubiquitination Sites in Arabidopsis thaliana. Current Bioinformatics, 2019, 14, 614-620.	1.5	21
81	Comparison of a homology model and the crystallographic structure of human $11\hat{l}^2$ -hydroxysteroid dehydrogenase type $1~(11\hat{l}^2\text{HSD1})$ in a structure-based identification of inhibitors. Journal of Computer-Aided Molecular Design, 2006, 20, 67-81.	2.9	20
82	Expression patterns and ligand binding characterization of Plus-C odorant-binding protein 14 from Adelphocoris lineolatus (Goeze). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 227, 75-82.	1.6	20
83	Stabilization mechanism of MPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling computation. Journal of Molecular Catalysis B: Enzymatic, 2001, 14, 85-94.	1.8	19
84	The AtMAP65-1 Cross-Bridge Between Microtubules is Formed by One Dimer. Plant and Cell Physiology, 2007, 48, 866-874.	3.1	19
85	Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth under high-iron and low-oxygen conditions. Scientific Reports, 2017, 7, 2800.	3.3	19
86	PlaD: A Transcriptomics Database for Plant Defense Responses to Pathogens, Providing New Insights into Plant Immune System. Genomics, Proteomics and Bioinformatics, 2018, 16, 283-293.	6.9	19
87	Potential for Dramatic Improvement in Sequence Alignment against Structures of Remote Homologous Proteins by Extracting Structural Information from Multiple Structure Alignment. Journal of Molecular Biology, 2003, 332, 127-142.	4.2	18
88	Kinetic study of thermal inactivation for native and methoxypolyethylene glycol modified trypsin. Process Biochemistry, 2000, 35, 1235-1240.	3.7	17
89	Current status and future perspectives of computational studies on human–virus protein–protein interactions. Briefings in Bioinformatics, 2021, 22, .	6.5	17
90	MetalExplorer, a Bioinformatics Tool for the Improved Prediction of Eight Types of Metal-Binding Sites Using a Random Forest Algorithm with Two- Step Feature Selection. Current Bioinformatics, 2017, 12, .	1.5	17

#	Article	IF	Citations
91	Characterization of the MHC class II α-chain gene in ducks. Immunogenetics, 2011, 63, 667-678.	2.4	16
92	Outer membrane proteins can be simply identified using secondary structure element alignment. BMC Bioinformatics, 2011, 12, 76.	2.6	16
93	Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices. Molecular BioSystems, 2015, 11, 354-360.	2.9	16
94	Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. Plant Molecular Biology, 2017, 94, 453-467.	3.9	16
95	A new class of analgesic agents toward prostacyclin receptor inhibition: Synthesis, biological studies and QSAR analysis of 1-hydroxyl-2-substituted phenyl-4,4,5,5-tetramethylimidazolines. European Journal of Medicinal Chemistry, 2008, 43, 1048-1058.	5.5	15
96	Evaluation of Protein Phosphorylation Site Predictors. Protein and Peptide Letters, 2010, 17, 64-69.	0.9	15
97	TIM-Finder: A new method for identifying TIM-barrel proteins. BMC Structural Biology, 2009, 9, 73.	2.3	13
98	Exploring the sequence-structure protein landscape in the glycosyltransferase family. Protein Science, 2009, 12, 2291-2302.	7.6	13
99	Comprehensive analysis of tandem amino acid repeats from ten angiosperm genomes. BMC Genomics, 2011, 12, 632.	2.8	12
100	The zinc-finger bearing xenogeneic silencer MucR in \hat{l}_{\pm} -proteobacteria balances adaptation and regulatory integrity. ISME Journal, 2022, 16, 738-749.	9.8	12
101	Identification of Catalytic Residues Using a Novel Feature that Integrates the Microenvironment and Geometrical Location Properties of Residues. PLoS ONE, 2012, 7, e41370.	2.5	12
102	Structure, Binding Characteristics, and 3D Model Prediction of a Newly Identified Odorant-Binding Protein from the Cotton Bollworm, Helicoverpa armigera ($H\tilde{A}\frac{1}{4}$ bner). Journal of Integrative Agriculture, 2012, 11, 430-438.	3. 5	11
103	AraPPISite: a database of fine-grained protein–protein interaction site annotations for Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 105-116.	3.9	11
104	Prediction and analysis of humanâ€herpes simplex virus type 1 proteinâ€protein interactions by integrating multiple methods. Quantitative Biology, 2020, 8, 312-324.	0.5	11
105	Tobacco Necrosis Virus-A ^C Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of <i>Nicotiana benthamiana</i> Plant-Microbe Interactions, 2021, 34, 49-61.	2.6	11
106	Lineage-Specific Rewiring of Core Pathways Predating Innovation of Legume Nodules Shapes Symbiotic Efficiency. MSystems, 2021, 6, .	3.8	11
107	Prp19â€associated splicing factor Cwf15 regulates fungal virulence and development in the rice blast fungus. Environmental Microbiology, 2021, 23, 5901-5916.	3.8	11
108	Solvation energy and thermal stability of hydrophilization-modified alpha-chymotrypsin. The Protein Journal, 1999, 18, 557-564.	1.1	10

#	Article	IF	Citations
109	Two distinct sites are essential for virulent infection and support of variant satellite RNA replication in spontaneous beet black scorch virus variants. Journal of General Virology, 2012, 93, 2718-2728.	2.9	10
110	GPCRserver: an accurate and novel G protein-coupled receptor predictor. Molecular BioSystems, 2014, 10, 2495-2504.	2.9	10
111	The hybrid protein interactome contributes to rice heterosis as epistatic effects. Plant Journal, 2020, 102, 116-128.	5.7	10
112	Structural Propensities of Human Ubiquitination Sites: Accessibility, Centrality and Local Conformation. PLoS ONE, 2013, 8, e83167.	2.5	10
113	The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. SSRN Electronic Journal, 0, , .	0.4	10
114	Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Molecular Biology and Evolution, 2022, 39, .	8.9	10
115	Operating Mechanism and Molecular Dynamics of Pheromone-Binding Protein ASP1 as Influenced by pH. PLoS ONE, 2014, 9, e110565.	2.5	9
116	Insights into genomic evolution from the chromosomal and mitochondrial genomes of Ustilaginoidea virens. Phytopathology Research, 2021, 3, .	2.4	9
117	Aspartic acid at residue 185 modulates the capacity of HP-PRRSV nsp4 to antagonize IFN-I expression. Virology, 2020, 546, 79-87.	2.4	9
118	Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 907.	3.5	8
119	Novel 1-oxyl-2-substitutedphenyl-4,4,5,5-tetramethylimidazolines: Synthesis, selectively analgesic action, and QSAR analysis. Bioorganic and Medicinal Chemistry, 2007, 15, 2815-2826.	3.0	7
120	Identification of WD40 repeats by secondary structure-aided profile–profile alignment. Journal of Theoretical Biology, 2016, 398, 122-129.	1.7	7
121	Comparison of linear gap penalties and profile-based variable gap penalties in profile–profile alignments. Computational Biology and Chemistry, 2011, 35, 308-318.	2.3	6
122	Quantitative structure–activity relationship study on antitumour activity of a series of flavonoids. Molecular Simulation, 2012, 38, 38-44.	2.0	6
123	Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 622203.	3.5	6
124	An Important Role for Purifying Selection in Archaeal Genome Evolution. MSystems, 2017, 2, .	3.8	5
125	Network-based analysis of virulence factors for uncovering Aeromonas veronii pathogenesis. BMC Microbiology, 2021, 21, 188.	3.3	5
126	Understanding the influence of AMG 510 on the structure of KRASG12C empowered by molecular dynamics simulation. Computational and Structural Biotechnology Journal, 2022, 20, 1056-1067.	4.1	5

#	Article	IF	CITATIONS
127	Genome-Wide Analysis of Enzyme Structure-Function Combination Across Three Domains of Life. Protein and Peptide Letters, 2007, 14, 291-297.	0.9	4
128	An Overview of the De Novo Prediction of Enzyme Catalytic Residues (Supplementry file). Current Bioinformatics, 2009, 4, 197-206.	1.5	4
129	Human Gene Functional Network-Informed Prediction of HIV-1 Host Dependency Factors. MSystems, 2020, 5, .	3.8	4
130	Prediction of outer membrane proteins by combining the position- and composition-based features of sequence profiles. Molecular BioSystems, 2014, 10, 1004.	2.9	3
131	Competition-cooperation relationship networks characterize the competition and cooperation between proteins. Scientific Reports, 2015, 5, 11619.	3.3	3
132	Comparative Study of Two Insulinlike Proteases in Cryptosporidium parvum. Microorganisms, 2021, 9, 861.	3.6	3
133	Transcriptional Landscapes of Long Non-coding RNAs and Alternative Splicing in Pyricularia oryzae Revealed by RNA-Seq. Frontiers in Plant Science, 2021, 12, 723636.	3.6	3
134	Identifying Coevolution Between Amino Acid Residues in Protein Families: Advances in the Improvement and Evaluation of Correlated Mutation Algorithms. Current Bioinformatics, 2013, 8, 148-160.	1.5	3
135	Comparative Analysis of Core and Accessory Genes in Coexpression Network. Methods in Molecular Biology, 2021, 2242, 45-58.	0.9	2
136	Multi-scale Convolutional Neural Networks for the Prediction of Human-virus Protein Interactions. , 2021, , .		2
137	Proteome-wide prediction and analysis of the Cryptosporidium parvum protein–protein interaction network through integrative methods. Computational and Structural Biotechnology Journal, 2022, 20, 2322-2331.	4.1	2
138	Combination of specific single chain antibody variable fragment and siRNA has a synergistic inhibitory effect on the propagation of avian influenza virus H5N1 in chicken cells. Virology Journal, 2014, 11, 208.	3.4	1
139	Special Issue on Plant Bioinformatics. Current Bioinformatics, 2019, 14, 564-565.	1.5	1
140	Deep Learning-Powered Prediction of Human-Virus Protein-Protein Interactions. Frontiers in Microbiology, 2022, 13, 842976.	3.5	1
141	Critical roles of amino acids Ser231, His107 and Asp156 of Staphylococcus sciuri exfoliative toxin C (ExhC) in the induction of skin exfoliations in neonate mice. Biologia (Poland), 2011, 66, 1189-1195.	1.5	0