
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843671/publications.pdf Version: 2024-02-01

MADE A FERROAIO

#	Article	IF	CITATIONS
1	Exerkines in health, resilience and disease. Nature Reviews Endocrinology, 2022, 18, 273-289.	4.3	268
2	Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Science Advances, 2022, 8, .	4.7	54
3	Stable Isotopic Tracer Phospholipidomics Reveals Contributions of Key Phospholipid Biosynthetic Pathways to Low Hepatocyte Phosphatidylcholine to Phosphatidylethanolamine Ratio Induced by Free Fatty Acids. Metabolites, 2021, 11, 188.	1.3	4
4	Yap regulates skeletal muscle fatty acid oxidation and adiposity in metabolic disease. Nature Communications, 2021, 12, 2887.	5.8	18
5	Circulating Ceramides- Are Origins Important for Sphingolipid Biomarkers and Treatments?. Frontiers in Endocrinology, 2021, 12, 684448.	1.5	18
6	Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nature Reviews Immunology, 2021, 21, 669-679.	10.6	16
7	IL-6 family cytokines as potential therapeutic strategies to treat metabolic diseases. Cytokine, 2021, 144, 155549.	1.4	6
8	"Sweet death― Fructose as a metabolic toxin that targets the gut-liver axis. Cell Metabolism, 2021, 33, 2316-2328.	7.2	68
9	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	1.2	6
10	The Protective Effect of Exercise in Neurodegenerative Diseases: The Potential Role of Extracellular Vesicles. Cells, 2020, 9, 2182.	1.8	31
11	The PI3K pathway preserves metabolic health through MARCO-dependent lipid uptake by adipose tissue macrophages. Nature Metabolism, 2020, 2, 1427-1442.	5.1	24
12	Metabolic communication during exercise. Nature Metabolism, 2020, 2, 805-816.	5.1	97
13	Who would have thought — myokines two decades on. Nature Reviews Endocrinology, 2020, 16, 619-620.	4.3	19
14	Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism, 2020, 2, 1034-1045.	5.1	174
15	Fecal microbiota transplantation from high caloric-fed donors alters glucose metabolism in recipient mice, independently of adiposity or exercise status. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E203-E216.	1.8	24
16	Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes. FASEB Journal, 2020, 34, 5697-5714.	0.2	10
17	MCL-1 is essential for survival but dispensable for metabolic fitness of FOXP3+ regulatory T cells. Cell Death and Differentiation, 2020, 27, 3374-3385.	5.0	2
18	Current and Future Treatments in the Fight against Non-Alcoholic Fatty Liver Disease. Cancers, 2020, 12, 1714.	1.7	28

#	Article	IF	CITATIONS
19	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	13.7	141
20	Can microbes increase exercise performance in athletes?. Nature Reviews Endocrinology, 2019, 15, 629-630.	4.3	2
21	Adipocyte-specific deletion of IL-6 does not attenuate obesity-induced weight gain or glucose intolerance in mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E597-E604.	1.8	21
22	Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature, 2019, 574, 63-68.	13.7	55
23	Vale Pernille HÃjman (1977–2019). Cell Metabolism, 2019, 29, 1235.	7.2	Ο
24	Metabolic control and sex: A focus on inflammatoryâ€linked mediators. British Journal of Pharmacology, 2019, 176, 4193-4207.	2.7	25
25	Mouse Model of Mutated in Colorectal Cancer Gene Deletion Reveals Novel Pathways in Inflammation and Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 819-839.	2.3	11
26	Preclinical Models for Studying NASH-Driven HCC: How Useful Are They?. Cell Metabolism, 2019, 29, 18-26.	7.2	169
27	Redefining Tissue Crosstalk via Shotgun Proteomic Analyses of Plasma Extracellular Vesicles. Proteomics, 2019, 19, e1800154.	1.3	16
28	Relieving ER stress to target NASH-driven hepatocellular carcinoma. Nature Reviews Endocrinology, 2019, 15, 73-74.	4.3	18
29	Protein Kinase C Epsilon Deletion in Adipose Tissue, but Not in Liver, Improves Glucose Tolerance. Cell Metabolism, 2019, 29, 183-191.e7.	7.2	42
30	Evidence against a role for NLRP3-driven islet inflammation in db/db mice. Molecular Metabolism, 2018, 10, 66-73.	3.0	32
31	APP deficiency results in resistance to obesity but impairs glucose tolerance upon high fat feeding. Journal of Endocrinology, 2018, 237, 311-322.	1.2	13
32	Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metabolism, 2018, 27, 1096-1110.e5.	7.2	309
33	Skeletal muscleâ€specific overexpression of heat shock protein 72 improves skeletal muscle insulinâ€stimulated glucose uptake but does not alter whole body metabolism. Diabetes, Obesity and Metabolism, 2018, 20, 1928-1936.	2.2	18
34	Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochemical Pharmacology, 2018, 150, 86-96.	2.0	63
35	Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metabolism, 2018, 27, 237-251.e4.	7.2	426
36	Female sex hormones are necessary for the metabolic effects mediated by loss of Interleukin 18 signaling. Molecular Metabolism, 2018, 12, 89-97.	3.0	8

#	Article	IF	CITATIONS
37	GeneXX: an online tool for the exploration of transcript changes in skeletal muscle associated with exercise. Physiological Genomics, 2018, 50, 376-384.	1.0	10
38	Exercise as medicine for survivors of paediatric cancer. Nature Reviews Endocrinology, 2018, 14, 506-508.	4.3	4
39	Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. European Heart Journal, 2018, 39, 2158-2167.	1.0	63
40	Muscle-specific overexpression of AdipoR1 or AdipoR2 gives rise to common and discrete local effects whilst AdipoR2 promotes additional systemic effects. Scientific Reports, 2017, 7, 41792.	1.6	13
41	Scriptaid enhances skeletal muscle insulin action and cardiac function in obese mice. Diabetes, Obesity and Metabolism, 2017, 19, 936-943.	2.2	18
42	IL-1β delivers a sweet deal. Nature Immunology, 2017, 18, 247-248.	7.0	4
43	Adiponectin serenades ceramidase to improve metabolism. Molecular Metabolism, 2017, 6, 233-235.	3.0	13
44	Health benefits of exercise — more than meets the eye!. Nature Reviews Endocrinology, 2017, 13, 72-74.	4.3	83
45	High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Science Translational Medicine, 2017, 9, .	5.8	43
46	Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Scientific Reports, 2017, 7, 12292.	1.6	22
47	Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection. Immunity, 2017, 47, 1129-1141.e5.	6.6	335
48	Inflammation, but not recruitment, of adipose tissue macrophages requires signalling through Mac-1 (CD11b/CD18) in diet-induced obesity (DIO). Thrombosis and Haemostasis, 2017, 117, 325-338.	1.8	25
49	Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. Journal of Clinical Investigation, 2017, 127, 2133-2147.	3.9	166
50	Over-expressing the soluble gp130-Fc does not ameliorate methionine and choline deficient diet-induced non alcoholic steatohepatitis in mice. PLoS ONE, 2017, 12, e0179099.	1.1	12
51	The roles of câ€Jun NH ₂ â€terminal kinases (JNKs) in obesity and insulin resistance. Journal of Physiology, 2016, 594, 267-279.	1.3	94
52	The ever-expanding myokinome: discovery challenges and therapeutic implications. Nature Reviews Drug Discovery, 2016, 15, 719-729.	21.5	204
53	Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle. Molecular Metabolism, 2016, 5, 1083-1091.	3.0	19
54	Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation. Cell Reports, 2016, 16, 2802-2810.	2.9	68

#	Article	IF	CITATIONS
55	Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Molecular Metabolism, 2016, 5, 699-708.	3.0	154
56	BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. American Journal of Pathology, 2016, 186, 3246-3260.	1.9	28
57	The role of gp130 receptor cytokines in the regulation of metabolic homeostasis. Journal of Experimental Biology, 2016, 219, 259-265.	0.8	45
58	NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells. Journal of Experimental Medicine, 2016, 213, 621-641.	4.2	33
59	PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nature Communications, 2016, 7, 10626.	5.8	26
60	Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. Journal of Applied Physiology, 2016, 120, 683-691.	1.2	62
61	Exercise and the immune system: implications for elite athletes and the general population. Immunology and Cell Biology, 2016, 94, 115-116.	1.0	11
62	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	7.2	133
63	High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE, 2016, 11, e0160407.	1.1	22
64	NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells. Journal of Cell Biology, 2016, 213, 21310IA67.	2.3	0
65	Nanoporous Metal–Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide. Advanced Healthcare Materials, 2015, 4, 2170-2175.	3.9	57
66	Exercise improves adipose function and inflammation and ameliorates fatty liver disease in obese diabetic mice. Obesity, 2015, 23, 1845-1855.	1.5	43
67	Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. ELife, 2015, 4, .	2.8	52
68	Blocking IL-6 trans-Signaling Prevents High-Fat Diet-Induced Adipose Tissue Macrophage Recruitment but Does Not Improve Insulin Resistance. Cell Metabolism, 2015, 21, 403-416.	7.2	208
69	Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development (Cambridge), 2015, 142, 681-691.	1.2	223
70	Genetic manipulation of cardiac Hsp72 levels does not alter substrate metabolism but reveals insights into high-fat feeding-induced cardiac insulin resistance. Cell Stress and Chaperones, 2015, 20, 461-472.	1.2	9
71	Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E778-E791.	1.8	43
72	The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity. Cell Metabolism, 2015, 21, 718-730.	7.2	83

#	Article	IF	CITATIONS
73	Fetuin B Is a Secreted Hepatocyte Factor Linking Steatosis to Impaired Glucose Metabolism. Cell Metabolism, 2015, 22, 1078-1089.	7.2	192
74	Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation. PLoS ONE, 2015, 10, e0145173.	1.1	15
75	Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Journal of Cell Science, 2015, 128, e1-e1.	1.2	Ο
76	Abstract 698: Increases Reticulated Platelets due to Enhanced Proliferation and Expansion of Bone Marrow Megakaryocyte Progenitors Accelerates Atherosclerosis in Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
77	Abstract 46: Cellular Cholesterol Homeostasis is Altered in Murine Models of Rheumatoid Arthritis and is Linked to Enhanced Myelopoiesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
78	Role of IL-6 in Exercise Training- and Cold-Induced UCP1 Expression in Subcutaneous White Adipose Tissue. PLoS ONE, 2014, 9, e84910.	1.1	158
79	The Dual-Specificity Phosphatase 2 (DUSP2) Does Not Regulate Obesity-Associated Inflammation or Insulin Resistance in Mice. PLoS ONE, 2014, 9, e111524.	1.1	9
80	The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nature Communications, 2014, 5, 5705.	5.8	86
81	Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Molecular Metabolism, 2014, 3, 781-793.	3.0	87
82	Come on BAIBA Light My Fire. Cell Metabolism, 2014, 19, 1-2.	7.2	38
83	Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology, 2014, 15, 423-430.	7.0	577
84	Adipose tissue inflammation in glucose metabolism. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 31-44.	2.6	69
85	From cytokine to myokine: the emerging role of interleukinâ€6 in metabolic regulation. Immunology and Cell Biology, 2014, 92, 331-339.	1.0	196
86	Role of interleukins in obesity: implications for metabolic disease. Trends in Endocrinology and Metabolism, 2014, 25, 312-319.	3.1	99
87	The immunomodulating role of exercise in metabolic disease. Trends in Immunology, 2014, 35, 262-269.	2.9	157
88	Coinhibitory Suppression of T Cell Activation by CD40 Protects Against Obesity and Adipose Tissue Inflammation in Mice. Circulation, 2014, 129, 2414-2425.	1.6	59
89	Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nature Communications, 2014, 5, 5190.	5.8	148
90	Activating HSP72 in Rodent Skeletal Muscle Increases Mitochondrial Number and Oxidative Capacity and Decreases Insulin Resistance. Diabetes, 2014, 63, 1881-1894.	0.3	153

#	Article	IF	CITATIONS
91	HSP72 Is a Mitochondrial Stress Sensor Critical for Parkin Action, Oxidative Metabolism, and Insulin Sensitivity in Skeletal Muscle. Diabetes, 2014, 63, 1488-1505.	0.3	108
92	Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia, 2013, 56, 1638-1648.	2.9	339
93	Interleukin-18 Activates Skeletal Muscle AMPK and Reduces Weight Gain and Insulin Resistance in Mice. Diabetes, 2013, 62, 3064-3074.	0.3	71
94	The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nature Immunology, 2013, 14, 1155-1165.	7.0	337
95	The Sphingosine-1-Phosphate Analog FTY720 Reduces Muscle Ceramide Content and Improves Glucose Tolerance in High Fat-Fed Male Mice. Endocrinology, 2013, 154, 65-76.	1.4	48
96	Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E213-E229.	1.8	17
97	Hydroximic Acid Derivatives: Pleiotropic Hsp Co-Inducers Restoring Homeostasis and Robustness. Current Pharmaceutical Design, 2013, 19, 309-346.	0.9	61
98	Thrombin-mediated Proteoglycan Synthesis Utilizes Both Protein-tyrosine Kinase and Serine/Threonine Kinase Receptor Transactivation in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2013, 288, 7410-7419.	1.6	47
99	p32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival. Biochemical Journal, 2013, 453, 381-391.	1.7	61
100	Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics, 2013, 8, 602-611.	1.3	75
101	Targeting gp130 to prevent inflammation and promote insulin action. Diabetes, Obesity and Metabolism, 2013, 15, 170-175.	2.2	26
102	lκB kinase β (IKKβ) does not mediate feedback inhibition of the insulin signalling cascade. Biochemical Journal, 2012, 442, 723-732.	1.7	5
103	Contraction-induced Interleukin-6 Gene Transcription in Skeletal Muscle Is Regulated by c-Jun Terminal Kinase/Activator Protein-1. Journal of Biological Chemistry, 2012, 287, 10771-10779.	1.6	87
104	Phosphoinositide 3-Kinase p110α Is a Master Regulator of Exercise-Induced Cardioprotection and PI3K Gene Therapy Rescues Cardiac Dysfunction. Circulation: Heart Failure, 2012, 5, 523-534.	1.6	115
105	Hedgehog Partial Agonism Drives Warburg-like Metabolism in Muscle and Brown Fat. Cell, 2012, 151, 414-426.	13.5	237
106	Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. Journal of Cell Biology, 2012, 197, 997-1008.	2.3	167
107	IL-6 Muscles In on the Gut and Pancreas to Enhance Insulin Secretion. Cell Metabolism, 2012, 15, 8-9.	7.2	18
108	Overexpression of Sphingosine Kinase 1 Prevents Ceramide Accumulation and Ameliorates Muscle Insulin Resistance in High-Fat Diet–Fed Mice. Diabetes, 2012, 61, 3148-3155.	0.3	126

#	Article	IF	CITATIONS
109	Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. Diabetologia, 2012, 55, 2769-2778.	2.9	49
110	Plasma Lysophosphatidylcholine Levels Are Reduced in Obesity and Type 2 Diabetes. PLoS ONE, 2012, 7, e41456.	1.1	285
111	Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 2012, 484, 394-398.	13.7	243
112	Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 2012, 8, 457-465.	4.3	1,972
113	CD40L Deficiency Attenuates Diet-Induced Adipose Tissue Inflammation by Impairing Immune Cell Accumulation and Production of Pathogenic IgG-Antibodies. PLoS ONE, 2012, 7, e33026.	1.1	33
114	Tumor Progression Locus 2 (Tpl2) Deficiency Does Not Protect against Obesity-Induced Metabolic Disease. PLoS ONE, 2012, 7, e39100.	1.1	7
115	Exercise Induces a Marked Increase in Plasma Follistatin: Evidence That Follistatin Is a Contraction-Induced Hepatokine. Endocrinology, 2011, 152, 164-171.	1.4	152
116	Differential response to resistance training in CHF according to ACE genotype. International Journal of Cardiology, 2011, 149, 330-334.	0.8	8
117	Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Molecular and Cellular Endocrinology, 2011, 335, 166-176.	1.6	109
118	Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia–reperfusion injury: A predominant role of anti-inflammation. Journal of Molecular and Cellular Cardiology, 2011, 50, 991-999.	0.9	99
119	Adiponectin sphings into action. Nature Medicine, 2011, 17, 37-38.	15.2	15
120	Deficiency of haematopoietic-cell-derived IL-10 does not exacerbate high-fat-diet-induced inflammation or insulin resistance in mice. Diabetologia, 2011, 54, 888-899.	2.9	50
121	Adipose Triglyceride Lipase-Null Mice Are Resistant to High-Fat Diet–Induced Insulin Resistance Despite Reduced Energy Expenditure and Ectopic Lipid Accumulation. Endocrinology, 2011, 152, 48-58.	1.4	94
122	Hematopoietic Cell–Restricted Deletion of CD36 Reduces High-Fat Diet–Induced Macrophage Infiltration and Improves Insulin Signaling in Adipose Tissue. Diabetes, 2011, 60, 1100-1110.	0.3	65
123	Myeloid-specific estrogen receptor α deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16457-16462.	3.3	147
124	IL-10 Controls Cystatin C Synthesis and Blood Concentration in Response to Inflammation through Regulation of IFN Regulatory Factor 8 Expression. Journal of Immunology, 2011, 186, 3666-3673.	0.4	43
125	Overcoming Insulin Resistance with Ciliary Neurotrophic Factor. Handbook of Experimental Pharmacology, 2011, , 179-199.	0.9	15
126	Membrane-Lipid Therapy in Operation: The HSP Co-Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts. PLoS ONE, 2011, 6, e28818.	1.1	71

#	Article	IF	CITATIONS
127	IL6 as a mediator of insulin resistance: fat or fiction?. Diabetologia, 2010, 53, 399-402.	2.9	37
128	Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia, 2010, 53, 2431-2441.	2.9	283
129	Current knowledge on playing football in hot environments. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 161-167.	1.3	51
130	Is Interleukin-6 Receptor Blockade the Holy Grail for Inflammatory Diseases?. Clinical Pharmacology and Therapeutics, 2010, 87, 396-398.	2.3	49
131	The 2009 Stock Conference Report: Inflammation, Obesity and Metabolic Disease. Obesity Reviews, 2010, 11, 635-644.	3.1	48
132	PI3K(p110α) Protects Against Myocardial Infarction-Induced Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 724-732.	1.1	160
133	Treatment of diabetes mellitus: new tricks by an old player. Nature Reviews Endocrinology, 2010, 6, 482-483.	4.3	6
134	HSP and Diabetes. Heat Shock Proteins, 2010, , 3-18.	0.2	5
135	Adiponectin Sparks an Interest in Calcium. Cell Metabolism, 2010, 11, 447-449.	7.2	8
136	Cytokine Regulation of AMPK signalling. Frontiers in Bioscience - Landmark, 2009, Volume, 1902.	3.0	40
137	FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle Journal of Biological Chemistry, 2009, 284, 20440.	1.6	1
138	High-Density Lipoprotein Modulates Glucose Metabolism in Patients With Type 2 Diabetes Mellitus. Circulation, 2009, 119, 2103-2111.	1.6	363
139	α ₂ -AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E47-E55.	1.8	49
140	Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance. Diabetes, 2009, 58, 550-558.	0.3	295
141	Site-Specific Antiatherogenic Effect of the Antioxidant Ebselen in the Diabetic Apolipoprotein E–Deficient Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 823-830.	1.1	86
142	Interleukin-6 Attenuates Insulin-Mediated Increases in Endothelial Cell Signaling but Augments Skeletal Muscle Insulin Action via Differential Effects on Tumor Necrosis Factor-1± Expression. Diabetes, 2009, 58, 1086-1095.	0.3	49
143	Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 2009, 52, 1409-1418.	2.9	535
144	Role of exerciseâ€induced brainâ€derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Experimental Physiology, 2009, 94, 1153-1160.	0.9	217

#	Article	IF	CITATIONS
145	Skeletal muscle: not simply an organ for locomotion and energy storage. Journal of Physiology, 2009, 587, 509-510.	1.3	10
146	Examination of â€~lipotoxicity' in skeletal muscle of highâ€fat fed and <i>ob</i> / <i>ob</i> mice. Journal of Physiology, 2009, 587, 1593-1605.	1.3	95
147	Reactive Oxygen Species Enhance Insulin Sensitivity. Cell Metabolism, 2009, 10, 260-272.	7.2	509
148	CNTF: a target therapeutic for obesity-related metabolic disease?. Journal of Molecular Medicine, 2008, 86, 353-361.	1.7	31
149	Oxidative stress-induced insulin resistance in skeletal muscle cells is ameliorated by gamma-tocopherol treatment. European Journal of Nutrition, 2008, 47, 387-392.	1.8	30
150	Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiological Reviews, 2008, 88, 1379-1406.	13.1	1,683
151	HSP72 protects against obesity-induced insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1739-1744.	3.3	477
152	Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPARα and UCP2 expression in rats. Journal of Endocrinology, 2008, 198, 367-374.	1.2	55
153	FOXO1 Regulates the Expression of 4E-BP1 and Inhibits mTOR Signaling in Mammalian Skeletal Muscle. Journal of Biological Chemistry, 2007, 282, 21176-21186.	1.6	89
154	Tissue-Specific Effects of Rosiglitazone and Exercise in the Treatment of Lipid-Induced Insulin Resistance. Diabetes, 2007, 56, 1856-1864.	0.3	85
155	Exercise and inflammation. Journal of Applied Physiology, 2007, 103, 376-377.	1.2	53
156	Effect of High-Frequency Resistance Exercise on Adaptive Responses in Skeletal Muscle. Medicine and Science in Sports and Exercise, 2007, 39, 2135-2144.	0.2	30
157	Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis. Journal of Applied Physiology, 2007, 102, 814-816.	1.2	148
158	Last Word on Point:Counterpoint "Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homoestasis― Journal of Applied Physiology, 2007, 102, 825-825.	1.2	0
159	Hepatic lactate uptake versus leg lactate output during exercise in humans. Journal of Applied Physiology, 2007, 103, 1227-1233.	1.2	38
160	It's what you do with the fat that matters!. Nature Medicine, 2007, 13, 1137-1138.	15.2	6
161	Mechanisms of Stress-Induced Cellular Hsp72 Release. , 2007, , 31-37.		3
162	gp130 receptor ligands as potential therapeutic targets for obesity. Journal of Clinical Investigation, 2007, 117, 841-849.	3.9	105

#	Article	IF	CITATIONS
163	Macrophage PPARÎ ³ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. Journal of Clinical Investigation, 2007, 117, 1658-1669.	3.9	413
164	AMP-activated protein kinase — the fat controller of the energy railroadThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference Canadian Journal of Physiology and Pharmacology, 2006, 84, 655-665.	0.7	66
165	Exercise and interleukin-6 action. Expert Review of Endocrinology and Metabolism, 2006, 1, 319-321.	1.2	9
166	Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2006, 31, 302-312.	0.9	83
167	Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metabolism, 2006, 4, 465-474.	7.2	363
168	Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. Journal of Applied Physiology, 2006, 100, 1679-1687.	1.2	77
169	CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine, 2006, 12, 541-548.	15.2	250
170	Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes. Journal of Physiology, 2006, 574, 139-147.	1.3	91
171	Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion. Diabetologia, 2006, 49, 1000-1007.	2.9	39
172	Stearoyl CoA desaturase 1 is elevated in obesity but protects against fatty acid-induced skeletal muscle insulin resistance in vitro. Diabetologia, 2006, 49, 3027-3037.	2.9	88
173	Ciliary Neurotrophic Factor Suppresses Hypothalamic AMP-Kinase Signaling in Leptin-Resistant Obese Mice. Endocrinology, 2006, 147, 3906-3914.	1.4	92
174	Ciliary Neurotrophic Factor Prevents Acute Lipid-Induced Insulin Resistance by Attenuating Ceramide Accumulation and Phosphorylation of c-Jun N-Terminal Kinase in Peripheral Tissues. Endocrinology, 2006, 147, 2077-2085.	1.4	76
175	Interleukin-6 Increases Insulin-Stimulated Glucose Disposal in Humans and Glucose Uptake and Fatty Acid Oxidation In Vitro via AMP-Activated Protein Kinase. Diabetes, 2006, 55, 2688-2697.	0.3	699
176	Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. Journal of Applied Physiology, 2006, 100, 1467-1474.	1.2	269
177	Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1341-E1350.	1.8	146
178	Chronic rosiglitazone treatment restores AMPKα2 activity in insulin-resistant rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E251-E257.	1.8	58
179	Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E500-E508.	1.8	197
180	Contraction-Induced Myokine Production and Release: Is Skeletal Muscle an Endocrine Organ?. Exercise and Sport Sciences Reviews, 2005, 33, 114-119.	1.6	306

#	Article	IF	CITATIONS
181	Hormone-sensitive lipase is reduced in the adipose tissue of patients with type 2 diabetes mellitus: influence of IL-6 infusion. Diabetologia, 2005, 48, 105-112.	2.9	43
182	Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E155-E162.	1.8	238
183	Recombinant human interleukin-6 infusion during low-intensity exercise does not enhance whole body lipolysis or fat oxidation in humans. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E2-E7.	1.8	23
184	PGCâ€1α gene expression is downâ€regulated by Aktâ€mediated phosphorylation and nuclear exclusion of FoxO1 in insulinâ€stimulated skeletal muscle. FASEB Journal, 2005, 19, 2072-2074.	0.2	65
185	Exosome-dependent Trafficking of HSP70. Journal of Biological Chemistry, 2005, 280, 23349-23355.	1.6	483
186	Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. Journal of Vascular Surgery, 2005, 41, 802-807.	0.6	124
187	Heat stress, cytokines, and the immune response to exercise. Brain, Behavior, and Immunity, 2005, 19, 404-412.	2.0	130
188	Muscle-derived interleukin-6—A possible link between skeletal muscle, adipose tissue, liver, and brain. Brain, Behavior, and Immunity, 2005, 19, 371-376.	2.0	166
189	Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exercise Immunology Review, 2005, 11, 46-52.	0.4	51
190	Rosiglitazone Enhances Glucose Tolerance by Mechanisms Other than Reduction of Fatty Acid Accumulation within Skeletal Muscle. Endocrinology, 2004, 145, 5665-5670.	1.4	53
191	Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R322-R327.	0.9	122
192	Interleukin-6 Is a Novel Factor Mediating Glucose Homeostasis During Skeletal Muscle Contraction. Diabetes, 2004, 53, 1643-1648.	0.3	352
193	βâ€∎drenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. FASEB Journal, 2004, 18, 1445-1446.	0.2	68
194	Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) α and δand PPAR coactivator 1α in human skeletal muscle, but not lipid regulatory genes. Journal of Molecular Endocrinology, 2004, 33, 533-544.	1.1	125
195	Skeletal myocytes are a source of interleukinâ€6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB Journal, 2004, 18, 992-994.	0.2	227
196	Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with ILâ€6 gene transcription during contraction. FASEB Journal, 2004, 18, 1785-1787.	0.2	100
197	Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E120-E127.	1.8	84
198	Muscle metabolism during sprint exercise in man: influence of sprint training. Journal of Science and Medicine in Sport, 2004, 7, 314-322.	0.6	73

#	Article	IF	CITATIONS
199	Central blockade of nitric oxide synthesis induces hyperthermia that is prevented by indomethacin in rats. Journal of Thermal Biology, 2004, 29, 401-405.	1.1	13
200	Interleukin-6 and tumor necrosis factor-? are not increased in patients with Type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia, 2004, 47, 1029-37.	2.9	147
201	Interleukin-6 and insulin sensitivity: friend or foe?. Diabetologia, 2004, 47, 1135-1142.	2.9	119
202	lonomycin, but not physiologic doses of epinephrine, stimulates skeletal muscle Interleukin-6 mRNA expression and protein release. Metabolism: Clinical and Experimental, 2004, 53, 1492-1495.	1.5	37
203	Glucose ingestion blunts hormone-sensitive lipase activity in contracting human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E144-E150.	1.8	22
204	Effect of Active versus Passive Recovery on Metabolism and Performance during Subsequent Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 2004, 14, 185-196.	1.0	36
205	Suppressing lipolysis increases interleukin-6 at rest and during prolonged moderate-intensity exercise in humans. Journal of Applied Physiology, 2004, 97, 689-696.	1.2	28
206	Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress and Chaperones, 2004, 9, 276.	1.2	87
207	Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress and Chaperones, 2004, 9, 390.	1.2	77
208	Interleukin-6 Is A Novel Factor Mediating Hepatic Glucose Production During Exercise. Medicine and Science in Sports and Exercise, 2004, 36, S177.	0.2	0
209	Does the aging skeletal muscle maintain its endocrine function?. Exercise Immunology Review, 2004, 10, 42-55.	0.4	33
210	Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Archiv European Journal of Physiology, 2003, 446, 9-16.	1.3	175
211	Glucose Ingestion Attenuates Interleukinâ€6 Release from Contracting Skeletal Muscle in Humans. Journal of Physiology, 2003, 549, 607-612.	1.3	154
212	Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA Are Reduced in Patients With Type 2 Diabetes: Evidence That Insulin Resistance Is Associated With a Disturbed Antioxidant Defense Mechanism. Diabetes, 2003, 52, 2338-2345.	0.3	310
213	Interleukin-6 Stimulates Lipolysis and Fat Oxidation in Humans. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3005-3010.	1.8	609
214	Exercise and ILâ€6 infusion inhibit endotoxinâ€induced TNFâ€î± production in humans. FASEB Journal, 2003, 17, 1-10.	0.2	612
215	Interleukin-6 gene expression is increased in insulin-resistant rat skeletal muscle following insulin stimulation. Biochemical and Biophysical Research Communications, 2003, 302, 837-840.	1.0	20
216	Skeletal muscle interleukin-6 and tumor necrosis factor-α release in healthy subjects and patients with type 2 diabetes at rest and during exercise. Metabolism: Clinical and Experimental, 2003, 52, 939-944.	1.5	69

#	Article	IF	CITATIONS
217	Regulation of glucose kinetics during intense exercise in humans: effects of α- and β-adrenergic blockade. Metabolism: Clinical and Experimental, 2003, 52, 1615-1620.	1.5	13
218	Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. Journal of Applied Physiology, 2003, 94, 2181-2187.	1.2	73
219	17beta-estradiol upregulates the expression of peroxisome proliferator-activated receptor alpha and lipid oxidative genes in skeletal muscle. Journal of Molecular Endocrinology, 2003, 31, 37-45.	1.1	76
220	Hepatosplanchnic clearance of interleukin-6 in humans during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E397-E402.	1.8	64
221	Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. Journal of Physiology, 2003, 548, 631-638.	1.3	106
222	Signaling pathways for IL-6 within skeletal muscle. Exercise Immunology Review, 2003, 9, 34-9.	0.4	12
223	Muscleâ€derived interleukinâ€6: mechanisms for activation and possible biological roles. FASEB Journal, 2002, 16, 1335-1347.	0.2	717
224	IL-6 and TNF-α expression in, and release from, contracting human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1272-E1278.	1.8	322
225	Effect of the ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1139-E1146.	1.8	110
226	Cytokine response to eccentric exercise in young and elderly humans. American Journal of Physiology - Cell Physiology, 2002, 283, C289-C295.	2.1	171
227	IL-6 activates HSP72 gene expression in human skeletal muscle. Biochemical and Biophysical Research Communications, 2002, 296, 1264-1266.	1.0	40
228	Plasma glucose kinetics during prolonged exercise in trained humans when fed carbohydrate. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E573-E577.	1.8	14
229	The Cellular Origin of Plasma Cytokine Expression After Acute Exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1253-R1257.	0.9	5
230	Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. Journal of Physiology, 2002, 538, 911-917.	1.3	135
231	Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation. Journal of Physiology, 2002, 541, 273-281.	1.3	58
232	Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. Journal of Physiology, 2002, 544, 957-962.	1.3	153
233	Alterations in Energy Metabolism During Exercise and Heat Stress. Sports Medicine, 2001, 31, 47-59.	3.1	124
234	No effect of mild heat stress on the regulation of carbohydrate metabolism at the onset of exercise. Journal of Applied Physiology, 2001, 91, 2282-2288.	1.2	5

#	Article	IF	CITATIONS
235	Effect of adrenergic blockade on lymphocyte cytokine production at rest and during exercise. American Journal of Physiology - Cell Physiology, 2001, 281, C1233-C1240.	2.1	43
236	Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E817-E825.	1.8	126
237	Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-α levels after prolonged running. American Journal of Physiology - Cell Physiology, 2001, 280, C769-C774.	2.1	199
238	Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E803-E808.	1.8	150
239	Effect of carbohydrate ingestion on glucose kinetics during exercise in the heat. Journal of Applied Physiology, 2001, 90, 601-605.	1.2	28
240	Effects of ovarian hormones on exercise metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2001, 4, 515-520.	1.3	45
241	Effect of Glycerol-Induced Hyperhydration on Thermoregulation and Metabolism during Exercise in the Heat. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, 315-333.	1.0	49
242	Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling. European Journal of Applied Physiology, 2001, 84, 238-243.	1.2	35
243	Effect of Caffeine Co-Ingested with Carbohydrate or Fat on Metabolism and Performance in Endurance-Trained Men. Experimental Physiology, 2001, 86, 137-144.	0.9	51
244	Interleukinâ€6 production in contracting human skeletal muscle is influenced by preâ€exercise muscle glycogen content. Journal of Physiology, 2001, 537, 633-639.	1.3	348
245	Carbohydrate ingestion attenuates the increase in plasma interleukinâ€6, but not skeletal muscle interleukinâ€6 mRNA, during exercise in humans. Journal of Physiology, 2001, 533, 585-591.	1.3	167
246	Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. Journal of Physiology, 2001, 534, 269-278.	1.3	131
247	The influence of whole-body vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 128, 657-666.	0.8	51
248	Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 128, 667-677.	0.8	89
249	Exercise increases serum Hsp72 in humans. Cell Stress and Chaperones, 2001, 6, 386.	1.2	236
250	Effect of training status and relative exercise intensity on physiological responses in men. Medicine and Science in Sports and Exercise, 2000, 32, 1648-1654.	0.2	65
251	Effect of altering substrate availability on metabolism and performance during intense exercise. British Journal of Nutrition, 2000, 84, 829-838.	1.2	44
252	Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. Journal of Physiology, 2000, 528, 647-655.	1.3	102

#	Article	IF	CITATIONS
253	Effects of heat stress on physiological responses and exercise performance in elite cyclists. Journal of Science and Medicine in Sport, 2000, 3, 186-193.	0.6	250
254	Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. Journal of Applied Physiology, 2000, 88, 113-119.	1.2	88
255	Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. Journal of Applied Physiology, 2000, 89, 2413-2421.	1.2	153
256	Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. Journal of Applied Physiology, 2000, 89, 2220-2226.	1.2	145
257	Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. Journal of Applied Physiology, 2000, 89, 1845-1851.	1.2	165
258	HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. Journal of Applied Physiology, 2000, 89, 1055-1060.	1.2	147
259	Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. Journal of Applied Physiology, 2000, 88, 1576-1580.	1.2	38
260	Muscle adenine nucleotide metabolism during and in recovery from maximal exercise in humans. Journal of Applied Physiology, 2000, 88, 1513-1519.	1.2	33
261	Effect of acute plasma volume expansion on thermoregulation and exercise performance in the heat. Medicine and Science in Sports and Exercise, 2000, 32, 958-962.	0.2	27
262	Does muscle function and metabolism affect exercise performance in the heat?. Exercise and Sport Sciences Reviews, 2000, 28, 171-6.	1.6	47
263	Glucose production during strenuous exercise in humans: role of epinephrine. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1130-E1135.	1.8	36
264	Muscle IMP accumulation during fatiguing submaximal exercise in endurance trained and untrained men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R295-R300.	0.9	10
265	Acute plasma volume expansion: effect on metabolism during submaximal exercise. Journal of Applied Physiology, 1999, 87, 1202-1206.	1.2	6
266	Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. Journal of Applied Physiology, 1999, 86, 902-908.	1.2	214
267	Skeletal muscle energy metabolism during prolonged, fatiguing exercise. Journal of Applied Physiology, 1999, 87, 2341-2347.	1.2	53
268	Effect of Temperature on Muscle Metabolism During Submaximal Exercise in Humans. Experimental Physiology, 1999, 84, 775-784.	0.9	59
269	Effect of Temperature on Muscle Metabolism During Submaximal Exercise in Humans. , 1999, 84, 775.		17
270	GLUCOSE KINETICS DURING PROLONGED EXERCISE TO FATIGUE WITH CARBOHYDRATE INGESTION. Medicine and Science in Sports and Exercise, 1999, 31, S127.	0.2	1

#	Article	IF	CITATIONS
271	EFFECT OF ACUTE PLASMA VOLUME EXPANSION ON EXERCISE PERFORMANCE IN THE HEAT. Medicine and Science in Sports and Exercise, 1999, 31, S299.	0.2	2
272	THERMOREGULATORY, METABOLIC AND CARDIOVASCULAR RESPONSES DURING EXERCISE AND HEAT STRESS: EFFECT OF GLYCEROL INDUCED HYPERHYDRATION. Medicine and Science in Sports and Exercise, 1999, 31, S200.	0.2	0
273	Effect of temperature on muscle metabolism during submaximal exercise in humans. Experimental Physiology, 1999, 84, 775-84.	0.9	24
274	Muscle metabolites and performance during high-intensity, intermittent exercise. Journal of Applied Physiology, 1998, 84, 1687-1691.	1.2	125
275	Effect of epinephrine on muscle glycogenolysis during exercise in trained men. Journal of Applied Physiology, 1998, 84, 465-470.	1.2	131
276	Pre-exercise carbohydrate ingestion: effect of the glycemic index on endurance exercise performance. Medicine and Science in Sports and Exercise, 1998, 30, 844-849.	0.2	60
277	Pre-exercise carbohydrate ingestion. Medicine and Science in Sports and Exercise, 1998, 30, 844-849.	0.2	34
278	Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Medicine and Science in Sports and Exercise, 1997, 29, 220-224.	0.2	54
279	Effect of heat stress on glucose kinetics during exercise. Journal of Applied Physiology, 1996, 81, 1594-1597.	1.2	107
280	CHO feeding before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. Journal of Applied Physiology, 1996, 81, 1115-1120.	1.2	102
281	Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 271, R1251-R1255.	0.9	97
282	Blunting the rise in body temperature reduces muscle glycogenolysis during exercise in humans. Experimental Physiology, 1996, 81, 685-693.	0.9	67
283	Effect of CHO ingestion on exercise metabolism and performance in different ambient temperatures. Medicine and Science in Sports and Exercise, 1996, 28, 1380-1387.	0.2	47
284	EFFECT OF AMBIENT TEMPERATURE ON METABOLIC INDICES OF FATIGUE DURING PROLONGED EXERCISE 1071. Medicine and Science in Sports and Exercise, 1996, 28, 180.	0.2	7
285	Effect of creatine supplementation on intramuscular TCr, metabolism and performance during intermittent, supramaximal exercise in humans. Acta Physiologica Scandinavica, 1995, 155, 387-395.	2.3	127
286	Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. Journal of Applied Physiology, 1994, 76, 589-597.	1.2	197
287	Effect of heat stress on muscle energy metabolism during exercise. Journal of Applied Physiology, 1994, 77, 2827-2831.	1.2	182
288	Influence of sprint training on human skeletal muscle purine nucleotide metabolism. Journal of Applied Physiology, 1994, 76, 1802-1809.	1.2	143

1

#	Article	IF	CITATIONS
289	Heat stress increases ammonia accumulation during exercise in humans. Experimental Physiology, 1993, 78, 847-850.	0.9	15

290 Exercise at Climatic Extremes. , 0, , 497-509.