Johan A Martens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841680/publications.pdf

Version: 2024-02-01

477 papers

24,401 citations

80 h-index 130 g-index

514 all docs

514 docs citations

514 times ranked

23042 citing authors

#	Article	IF	CITATIONS
1	The nanosilica hazard: another variable entity. Particle and Fibre Toxicology, 2010, 7, 39.	6.2	636
2	Sizeâ€Dependent Cytotoxicity of Monodisperse Silica Nanoparticles in Human Endothelial Cells. Small, 2009, 5, 846-853.	10.0	513
3	Selective Adsorption and Separation of Xylene Isomers and Ethylbenzene with the Microporous Vanadium(IV) Terephthalate MIL-47. Angewandte Chemie - International Edition, 2007, 46, 4293-4297.	13.8	496
4	Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature, 2015, 528, 245-248.	27.8	450
5	Selective Adsorption and Separation of <i>ortho</i> -Substituted Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. Journal of the American Chemical Society, 2008, 130, 14170-14178.	13.7	376
6	Tailoring nanoporous materials by atomic layer deposition. Chemical Society Reviews, 2011, 40, 5242.	38.1	338
7	Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite. Applied Catalysis, 1983, 8, 123-141.	0.8	318
8	Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOHâ^'TEOSâ^'H2O System. Journal of Physical Chemistry B, 1999, 103, 4965-4971.	2.6	299
9	Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 2009, 260, 142-149.	4.2	294
10	Understanding the Role of Sodium during Adsorption:Â A Force Field for Alkanes in Sodium-Exchanged Faujasites. Journal of the American Chemical Society, 2004, 126, 11377-11386.	13.7	255
11	Ordered Mesoporous Silica Material SBA-15: A Broad-Spectrum Formulation Platform for Poorly Soluble Drugs. Journal of Pharmaceutical Sciences, 2009, 98, 2648-2658.	3.3	237
12	Crystallization mechanism of zeolite beta from (TEA)2O, Na2O and K2O containing aluminosilicate gels Applied Catalysis, 1987, 31, 35-64.	0.8	229
13	Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane. Zeolites, 1984, 4, 98-107.	0.5	227
14	Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010, 22, 2685-2688.	21.0	224
15	Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 223-230.	4.3	221
16	High-Temperature Low-Pressure Adsorption of Branched C5â^'C8 Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. Journal of Physical Chemistry B, 1998, 102, 4588-4597.	2.6	212
17	Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis. Journal of Physical Chemistry B, 1999, 103, 4960-4964.	2.6	212
18	Physical State of Poorly Water Soluble Therapeutic Molecules Loaded into SBA-15 Ordered Mesoporous Silica Carriers: A Case Study with Itraconazole and Ibuprofen. Langmuir, 2008, 24, 8651-8659.	3.5	212

#	Article	IF	Citations
19	Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chemical Communications, 2007, , 1375.	4.1	202
20	Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Particle and Fibre Toxicology, 2010, 7, 10.	6.2	198
21	Selective Isomerization of Hydrocarbon Chains on External Surfaces of Zeolite Crystals. Angewandte Chemie International Edition in English, 1995, 34, 2528-2530.	4.4	197
22	A screening study of surface stabilization during the production of drug nanocrystals. Journal of Pharmaceutical Sciences, 2009, 98, 2091-2103.	3.3	191
23	Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chemical Communications, 2015, 51, 918-920.	4.1	187
24	Nominal and Effective Dosimetry of Silica Nanoparticles in Cytotoxicity Assays. Toxicological Sciences, 2008, 104, 155-162.	3.1	183
25	Monolithic cells for solar fuels. Chemical Society Reviews, 2014, 43, 7963-7981.	38.1	181
26	Drying of crystalline drug nanosuspensionsâ€"The importance of surface hydrophobicity on dissolution behavior upon redispersion. European Journal of Pharmaceutical Sciences, 2008, 35, 127-135.	4.0	179
27	Superâ€Resolution Reactivity Mapping of Nanostructured Catalyst Particles. Angewandte Chemie - International Edition, 2009, 48, 9285-9289.	13.8	175
28	The Chemical Route to a Carbon Dioxide Neutral World. ChemSusChem, 2017, 10, 1039-1055.	6.8	174
29	Monomethyl-Branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H-ZSM-22 Bifunctional Catalyst. Journal of Catalysis, 2000, 190, 39-48.	6.2	172
30	Zeosil Nanoslabs: Building Blocks innPr4N+-Mediated Synthesis of MFI Zeolite. Angewandte Chemie - International Edition, 2001, 40, 2637-2640.	13.8	172
31	Chromatographic Study of Adsorption ofn-Alkanes on Zeolites at High Temperatures. Journal of Physical Chemistry B, 1998, 102, 3077-3081.	2.6	170
32	ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery. Journal of Materials Chemistry A, 2014, 2, 10034-10040.	10.3	170
33	Physicochemical Characterization of Silicalite-1 Nanophase Material. Journal of Physical Chemistry B, 1998, 102, 2633-2639.	2.6	166
34	Shape-selectivity changes in high-silica zeolites. Faraday Discussions of the Chemical Society, 1981, 72, 353.	2.2	165
35	Design of zeolite by inverse sigma transformation. Nature Materials, 2012, 11, 1059-1064.	27.5	161
36	Synthesis and shape-selective properties of ZSM-22. Applied Catalysis, 1989, 48, 137-148.	0.8	159

#	Article	IF	Citations
37	Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis. Chemical Communications, 2010, 46, 8186.	4.1	158
38	Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. Journal of Materials Chemistry, 2012, 22, 13742.	6.7	158
39	Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chemistry, 2014, 16, 695-707.	9.0	147
40	Ternary Ag/MgOâ€SiO ₂ Catalysts for the Conversion of Ethanol into Butadiene. ChemSusChem, 2015, 8, 994-1008.	6.8	147
41	NH ₂ -MIL-53(Al): A High-Contrast Reversible Solid-State Nonlinear Optical Switch. Journal of the American Chemical Society, 2012, 134, 8314-8317.	13.7	144
42	Synthesis and Characterization of Stable Monodisperse Silica Nanoparticle Sols for <i>in Vitro</i> Cytotoxicity Testing. Langmuir, 2010, 26, 328-335.	3.5	137
43	Highly selective gas separation membrane using in situ amorphised metal–organic frameworks. Energy and Environmental Science, 2017, 10, 2342-2351.	30.8	137
44	Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 2013, 300, 70-80.	6.2	132
45	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	13.8	127
46	The potential and limitations of the n-decane hydroconversion as a test reaction for characterization of the void space of molecular sieve zeolites. Zeolites, 1986, 6, 334-348.	0.5	126
47	Influence of size, surface area and microporosity on the i> in vitro iverto activity of amorphous silica nanoparticles in different cell types. Nanotoxicology, 2010, 4, 307-318.	3.0	122
48	Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity. Applied Catalysis B: Environmental, 2014, 156-157, 116-121.	20.2	122
49	Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chemical Society Reviews, 2014, 43, 990-1006.	38.1	115
50	Copper Benzene Tricarboxylate Metal–Organic Framework with Wide Permanent Mesopores Stabilized by Keggin Polyoxometallate Ions. Journal of the American Chemical Society, 2012, 134, 10911-10919.	13.7	112
51	Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 354-365.	4.3	111
52	Hydroisomerization of Emerging Renewable Hydrocarbons using Hierarchical Pt/Hâ€ZSMâ€⊋2 Catalyst. ChemSusChem, 2013, 6, 421-425.	6.8	111
53	Cr-MIL-101 encapsulated Keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. Green Chemistry, 2014, 16, 1351-1357.	9.0	110
54	Incorporation of nano-sized zeolites in membranes. Chemical Communications, 2000, , 2467-2468.	4.1	107

#	Article	IF	Citations
55	Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance. Journal of Membrane Science, 2017, 523, 561-566.	8.2	107
56	Direct Observation of Molecularâ€Level Template Action Leading to Selfâ€Assembly of a Porous Framework. Chemistry - A European Journal, 2010, 16, 3926-3932.	3.3	106
57	Factors affecting the synthesis efficiency of zeolite BETA from aluminosilicate gels containing alkali and tetraethylammonium ions. Zeolites, 1988, 8, 46-53.	0.5	105
58	Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution. European Journal of Inorganic Chemistry, 1999, 1999, 565-577.	2.0	105
59	Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. Nanoscale, 2014, 6, 2056.	5.6	105
60	Design and Synthesis of Hierarchical Materials from Ordered Zeolitic Building Units. Chemistry - A European Journal, 2005, 11, 4306-4313.	3.3	101
61	Solubility Increases Associated with Crystalline Drug Nanoparticles: Methodologies and Significance. Molecular Pharmaceutics, 2010, 7, 1858-1870.	4.6	100
62	Stability improvement of Cu3(BTC)2 metal–organic frameworks under steaming conditions by encapsulation of a Keggin polyoxometalate. Chemical Communications, 2011, 47, 8037.	4.1	98
63	Interplay of Metal Node and Amine Functionality in NH ₂ -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir, 2012, 28, 12916-12922.	3.5	98
64	Adsorption of multi-heavy metals onto water treatment residuals: Sorption capacities and applications. Chemical Engineering Journal, 2012, 200-202, 405-415.	12.7	97
65	Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics. Journal of Membrane Science, 2006, 278, 83-91.	8.2	95
66	Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nature Communications, 2017, 8, 1074.	12.8	95
67	Methods for in situ spectroscopic probing of the synthesis of a zeolite. Chemical Society Reviews, 2010, 39, 4626.	38.1	94
68	Elucidating the photocatalytic degradation pathway of acetaldehyde: An FTIR in situ study under atmospheric conditions. Applied Catalysis B: Environmental, 2011, 106, 630-638.	20.2	94
69	Submicrometerâ€Sized ZIFâ€71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy. Advanced Functional Materials, 2015, 25, 516-525.	14.9	94
70	Dimethyl Branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H–ZSM-22 Bifunctional Catalyst. Journal of Catalysis, 2001, 203, 213-231.	6.2	93
71	Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 19142-19145.	3.1	93
72	Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology, 2010, 4, 382-395.	3.0	91

#	Article	IF	CITATIONS
73	Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Materials, 2021, 41, 69-107.	18.0	89
74	Tracking Structural Phase Transitions in Leadâ€Halide Perovskites by Means of Thermal Expansion. Advanced Materials, 2019, 31, e1900521.	21.0	88
75	Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier material. Microporous and Mesoporous Materials, 2010, 130, 154-161.	4.4	85
76	Alumina: discriminative analysis using 3D correlation of solid-state NMR parameters. Chemical Society Reviews, 2019, 48, 134-156.	38.1	85
77	Synthesis of zeolite ZSM-12 in the system (MTEA)2O-Na2O-SiO2-Al2O3-H2O. Zeolites, 1987, 7, 458-462.	0.5	84
78	Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chemical Communications, 2013, 49, 11737.	4.1	84
79	Chapter 12 Introduction to Acid Catalysis with Zeolites in Hydrocarbon Reactions. Studies in Surface Science and Catalysis, 1991, , 445-496.	1.5	83
80	NOx Abatement in Exhaust from Lean-Burn Combustion Engines by Reduction of NO2 over Silver-Containing Zeolite Catalysts. Angewandte Chemie - International Edition, 1998, 37, 1901-1903.	13.8	83
81	Combined NMR, SAXS, and DLS Study of Concentrated Clear Solutions Used in Silicalite-1 Zeolite Synthesis. Chemistry of Materials, 2007, 19, 3448-3454.	6.7	82
82	Role of 18-Crown-6 and 15-Crown-5 Ethers in the Crystallization of Polytype Faujasite Zeolites. Journal of the American Chemical Society, 1994, 116, 2950-2957.	13.7	81
83	Hydroisomerization and hydrocracking of linear and multibranched long model alkanes on hierarchical Pt/ZSM-22 zeolite. Catalysis Today, 2013, 218-219, 135-142.	4.4	81
84	Hierarchical Zeolitic Imidazolate Frameworkâ€8 Catalyst for Monoglyceride Synthesis. ChemCatChem, 2013, 5, 3562-3566.	3.7	81
85	Hierarchization of USY Zeolite by NH ₄ OH. A Postsynthetic Process Investigated by NMR and XRD. Journal of Physical Chemistry C, 2014, 118, 22573-22582.	3.1	81
86	Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 220-225.	4.3	81
87	Convenient synthesis of ordered mesoporous silica at room temperature and quasi-neutral pH. Journal of Materials Chemistry, 2009, 19, 8290.	6.7	80
88	Ordered mesoporous silica induces pH-independent supersaturation of the basic low solubility compound itraconazole resulting in enhanced transepithelial transport. International Journal of Pharmaceutics, 2008, 357, 169-179.	5.2	79
89	The very large pore molecular sieve VPI-5:. Applied Catalysis, 1989, 56, L21-L27.	0.8	78
90	Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions – A case study with itraconazole. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 590-596.	4.3	78

#	Article	IF	Citations
91	New Evidence for Precursor Species in the Formation of MFI Zeolite in the Tetrapropylammonium Hydroxideâ^'Tetraethyl Orthosilicateâ^'Water System. Journal of Physical Chemistry B, 2002, 106, 4897-4900.	2.6	77
92	Formation of ZSMâ€22 Zeolite Catalytic Particles by Fusion of Elementary Nanorods. Chemistry - A European Journal, 2007, 13, 10070-10077.	3.3	77
93	Hollow filler based mixed matrix membranes. Chemical Communications, 2010, 46, 2492.	4.1	77
94	The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicology Letters, 2011, 206, 197-203.	0.8	77
95	Multilayered Supported Ionic Liquids as Catalysts for Chemical Fixation of Carbon Dioxide: A High‶hroughput Study in Supercritical Conditions. ChemSusChem, 2011, 4, 1830-1837.	6.8	77
96	Plasma enhanced atomic layer deposition of Ga ₂ O ₃ thin films. Journal of Materials Chemistry A, 2014, 2, 19232-19238.	10.3	77
97	Tracer Chromatographic Study of Pore and Pore Mouth Adsorption of Linear and Monobranched Alkanes on ZSM-22 Zeolite. Journal of Physical Chemistry B, 2003, 107, 398-406.	2.6	76
98	Heteropolyacid encapsulated in Cu3(BTC)2 nanocrystals: An effective esterification catalyst. Catalysis Today, 2011, 171, 275-280.	4.4	76
99	Catalyst Design by NH ₄ OH Treatment of USY Zeolite. Advanced Functional Materials, 2015, 25, 7130-7144.	14.9	76
100	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. ACS Omega, 2016, 1, 148-159.	3.5	76
101	Hydrocracking of n-Alkane Mixtures on Pt/Hâ^'Y Zeolite:  Chain Length Dependence of the Adsorption and the Kinetic Constants. Industrial & Engineering Chemistry Research, 1997, 36, 3242-3247.	3.7	74
102	Activation of Small Alkanes on Solid Acids. An H/D Exchange Study by Liquid and Solid-State NMR: The Activation Energy and the Inhibiting Effect of Carbon Monoxide. Journal of Catalysis, 1999, 181, 265-270.	6.2	74
103	Amorphous microporous mixed oxides as selective redox catalysts. Catalysis Letters, 1996, 38, 209-214.	2.6	73
104	²⁹ Si NMR and UVâ^'Raman Investigation of Initial Oligomerization Reaction Pathways in Acid-Catalyzed Silica Solâ^'Gel Chemistry. Journal of Physical Chemistry C, 2011, 115, 3562-3571.	3.1	72
105	Strategies for Enhancing the Catalytic Performance of Metal–Organic Frameworks in the Fixation of CO ₂ into Cyclic Carbonates. ChemSusChem, 2017, 10, 1283-1291.	6.8	72
106	Synthesis and Characterisation of Silicon-Rich Sapo-5. Studies in Surface Science and Catalysis, 1988, 37, 97-105.	1.5	71
107	Zeolites and their Mechanism of Synthesis. Studies in Surface Science and Catalysis, 1994, 84, 3-21.	1.5	71
108	Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Optics Express, 2012, 20, 11855.	3.4	69

#	Article	IF	CITATIONS
109	Combined in situ 29Si NMR and small-angle X-ray scattering study of precursors in MFI zeolite formation from silicic acid in TPAOH solutions. Physical Chemistry Chemical Physics, 2003, 5, 3518.	2.8	66
110	Cage and Window Effects in the Adsorption of $\langle i \rangle n \langle i \rangle$ -Alkanes on Chabazite and SAPO-34. Journal of Physical Chemistry C, 2008, 112, 16593-16599.	3.1	66
111	Quantitative Three-Dimensional Modeling of Zeotile Through Discrete Electron Tomography. Journal of the American Chemical Society, 2009, 131, 4769-4773.	13.7	66
112	In Situ X-ray Fluorescence Measurements During Atomic Layer Deposition: Nucleation and Growth of TiO ₂ on Planar Substrates and in Nanoporous Films. Journal of Physical Chemistry C, 2011, 115, 6605-6610.	3.1	66
113	Adsorption and Separation of CO ₂ on KFI Zeolites: Effect of Cation Type and Si/Al Ratio on Equilibrium and Kinetic Properties. Langmuir, 2013, 29, 4998-5012.	3.5	66
114	Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catalysis Today, 2012, 190, 23-30.	4.4	65
115	PDMS mixed matrix membranes containing hollow silicalite sphere for ethanol / water separation by pervaporation. Journal of Membrane Science, 2016, 502, 48-56.	8.2	65
116	Kinetics of Hydrogen–Deuterium Exchange Reactions of Methane and Deuterated Acid FAU- and MFI-Type Zeolites. Journal of Catalysis, 1999, 183, 355-367.	6.2	64
117	Evaluation of ordered mesoporous silica as a carrier for poorly soluble drugs: Influence of pressure on the structure and drug release. Journal of Pharmaceutical Sciences, 2011, 100, 3411-3420.	3.3	64
118	Oxidative Stress Induced by Pure and Iron-Doped Amorphous Silica Nanoparticles in Subtoxic Conditions. Chemical Research in Toxicology, 2012, 25, 828-837.	3.3	64
119	Alternative matrix formers for nanosuspension solidification: Dissolution performance and X-ray microanalysis as an evaluation tool for powder dispersion. European Journal of Pharmaceutical Sciences, 2008, 35, 344-353.	4.0	63
120	Gallium Oxide Nanorods: Novel, Templateâ€Free Synthesis and High Catalytic Activity in Epoxidation Reactions. Angewandte Chemie - International Edition, 2014, 53, 1585-1589.	13.8	63
121	1D-2D-3D Transformation Synthesis of Hierarchical Metal–Organic Framework Adsorbent for Multicomponent Alkane Separation. Journal of the American Chemical Society, 2017, 139, 819-828.	13.7	62
122	NOx removal from exhaust gas from lean burn internal combustion engines through adsorption on FAU type zeolites cation exchanged with alkali metals and alkaline earth metals. Applied Catalysis B: Environmental, 1999, 21, 215-220.	20.2	61
123	Alkylcarbenium Ion Concentrations in Zeolite Pores During Octane Hydrocracking on Pt/H-USY Zeolite. Catalysis Letters, 2004, 94, 81-88.	2.6	61
124	A Rational Approach to the Ionothermal Synthesis of an AlPO ₄ Molecular Sieve with an LTAâ€Type Framework. Angewandte Chemie - International Edition, 2010, 49, 4585-4588.	13.8	61
125	Investigation of the Mechanism of Colloidal Silicalite†Crystallization by Using DLS, SAXS, and ²⁹ Si NMR Spectroscopy. Chemistry - A European Journal, 2010, 16, 2764-2774.	3.3	60
126	PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation. Journal of Materials Chemistry A, 2016, 4, 12790-12798.	10.3	60

#	Article	IF	CITATIONS
127	MFI Fingerprint: How Pentasil-Induced IR Bands Shift during Zeolite Nanogrowth. Journal of Physical Chemistry C, 2008, 112, 9186-9191.	3.1	59
128	Computational modelling of a photocatalytic UV-LED reactor with internal mass and photon transfer consideration. Chemical Engineering Journal, 2015, 264, 962-970.	12.7	59
129	Formulate-ability of ten compounds with different physicochemical profiles in SMEDDS. European Journal of Pharmaceutical Sciences, 2009, 38, 479-488.	4.0	58
130	Towards Green Ammonia Synthesis through Plasmaâ€Driven Nitrogen Oxidation and Catalytic Reduction. Angewandte Chemie - International Edition, 2020, 59, 23825-23829.	13.8	58
131	Oligomerization of Hex-1-ene over Acidic Aluminosilicate Zeolites, MCM-41, and Silica-Alumina Co-gel Catalysts: A Comparative Study. Journal of Catalysis, 1999, 184, 262-267.	6.2	57
132	Reaction Mechanisms of Lean-Burn Hydrocarbon SCR over Zeolite Catalysts. Topics in Catalysis, 2004, 28, 119-130.	2.8	56
133	Comparison Between Hot-Melt Extrusion and Spray-Drying for Manufacturing Solid Dispersions of the Graft Copolymer of Ethylene Glycol and Vinylalcohol. Pharmaceutical Research, 2011, 28, 673-682.	3.5	56
134	Oriented FAU Zeolite Films on Micrometer-Sized EMT Crystals. Advanced Materials, 1999, 11, 561-564.	21.0	55
135	Evidence for Alkylcarbenium Ion Reaction Intermediates from Intrinsic Reaction Kinetics of C6–C9n-Alkane Hydroisomerization and Hydrocracking on Pt/H–Y and Pt/USY Zeolites. Journal of Catalysis, 2000, 190, 469-473.	6.2	55
136	The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chemical Engineering Journal, 2011, 174, 318-325.	12.7	55
137	Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by Single-Event MicroKinetic modeling. Journal of Catalysis, 2012, 290, 165-176.	6.2	55
138	Attempts to rationalize the distribution of hydrocracked products. III. mechanistic aspects of isomerization and hydrocracking of branched alkanes on ideal bifunctional large-pore zeolite catalysts. Catalysis Today, 1987, 1, 435-453.	4.4	54
139	Continuous Synthesis Process of Hexagonal Nanoplates of <i>P</i> 6 <i>m</i> 70910 Continuous Synthesis Process of Hexagonal Nanoplates of <i>P P <td< td=""><td>13.7</td><td>54</td></td<></i>	13.7	54
140	Rotational Entropy Driven Separation of Alkane/Isoalkane Mixtures in Zeolite Cages. Angewandte Chemie - International Edition, 2005, 44, 400-403.	13.8	53
141	Template-Aluminosilicate Structures at the Early Stages of Zeolite ZSM-5 Formation. A Combined Preparative, Solid-state NMR, and Computational Study. Journal of Physical Chemistry B, 2005, 109, 22767-22774.	2.6	53
142	Simple synthesis recipes of porous materials. Microporous and Mesoporous Materials, 2011, 140, 2-8.	4.4	53
143	Downscaling Drug Nanosuspension Production: Processing Aspects and Physicochemical Characterization. AAPS PharmSciTech, 2009, 10, 44-53.	3.3	52
144	The conflict between in vitro release studies in human biorelevant media and the in vivo exposure in rats of the lipophilic compound fenofibrate. International Journal of Pharmaceutics, 2011, 414, 118-124.	5.2	52

#	Article	IF	CITATIONS
145	Packing Effects in the Liquid-Phase Adsorption of C5-C22n-Alkanes on ZSM-5. Journal of Physical Chemistry B, 2003, 107, 10760-10766.	2.6	51
146	Connectivity Analysis of the Clear Sol Precursor of Silicalite: Are Nanoparticles Aggregated Oligomers or Silica Particles?. Journal of Physical Chemistry C, 2009, 113, 20827-20836.	3.1	51
147	<i>In Situ</i> Monitoring of Atomic Layer Deposition in Nanoporous Thin Films Using Ellipsometric Porosimetry. Langmuir, 2012, 28, 3852-3859.	3.5	51
148	Cytokine production by co-cultures exposed to monodisperse amorphous silica nanoparticles: The role of size and surface area. Toxicology Letters, 2012, 211, 98-104.	0.8	51
149	Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science and Technology, 2012, 2, 2311.	4.1	51
150	Water as a tuneable solvent: a perspective. Chemical Society Reviews, 2020, 49, 2557-2569.	38.1	51
151	Itraconazole/TPGS/Aerosil®200 solid dispersions. European Journal of Pharmaceutical Sciences, 2009, 38, 270-278.	4.0	50
152	Synthesis of Monoglycerides by Esterification of Oleic Acid with Glycerol in Heterogeneous Catalytic Process Using Tin–Organic Framework Catalyst. Catalysis Letters, 2013, 143, 356-363.	2.6	50
153	IZM-2: A promising new zeolite for the selective hydroisomerization of long-chain n-alkanes. Journal of Catalysis, 2013, 301, 20-29.	6.2	49
154	Plasmonic â€~rainbow' photocatalyst with broadband solar light response for environmental applications. Applied Catalysis B: Environmental, 2016, 188, 147-153.	20.2	49
155	Model System to Study the Influence of Aggregation on the Hemolytic Potential of Silica Nanoparticles. Chemical Research in Toxicology, 2011, 24, 1869-1875.	3.3	48
156	Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates. RSC Advances, 2014, 4, 11648.	3.6	48
157	Molecular shape selectivity of EUO zeolites. Microporous Materials, 1995, 4, 123-130.	1.6	47
158	Pd Segregation to the Surface of Bimetallic Pt–Pd Particles Supported on H-β Zeolite Evidenced with X-Ray Photoelectron Spectroscopy and Argon Cation Bombardment. Journal of Catalysis, 2000, 193, 108-114.	6.2	47
159	Self-Assembly of Pluronic F127â€"Silica Spherical Coreâ€"Shell Nanoparticles in Cubic Close-Packed Structures. Chemistry of Materials, 2015, 27, 5161-5169.	6.7	47
160	Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS ONE, 2017, 12, e0169886.	2.5	47
161	Micropore structure of zeolite MCM-22 as determined by the decane catalytic test reaction. Journal of the Chemical Society Chemical Communications, 1994, , 1671.	2.0	46
162	Tailored Alkene Oligomerization with H-ZSM-57 Zeolite. Angewandte Chemie - International Edition, 2000, 39, 4376-4379.	13.8	46

#	Article	IF	Citations
163	Molecular Competition Effects in Liquid-Phase Adsorption of Long-Chain n-Alkane Mixtures in ZSM-5 Zeolite Pores. Angewandte Chemie - International Edition, 2003, 42, 2774-2777.	13.8	45
164	Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts. Angewandte Chemie - International Edition, 2006, 45, 3106-3109.	13.8	45
165	Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the <i>in vitro </i> genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes. Nanotoxicology, 2014, 8, 876-884.	3.0	44
166	Towards zero-waste mineral carbon sequestration via two-way valorization of ironmaking slag. Chemical Engineering Journal, 2014, 249, 260-269.	12.7	44
167	Manganese oxide films with controlled oxidation state for water splitting devices through a combination of atomic layer deposition and post-deposition annealing. RSC Advances, 2016, 6, 98337-98343.	3.6	44
168	Structure and effective pore size of the dehydrated forms of the molecular sieve VPI-5. The Journal of Physical Chemistry, 1991, 95, 10025-10031.	2.9	43
169	Development of a fixed-bed continuous-flow high-throughput reactor for long-chain n-alkane hydroconversion. Applied Catalysis A: General, 2003, 243, 1-13.	4.3	43
170	Characterization of a Molecular Sieve Coating Using Ellipsometric Porosimetry. Langmuir, 2007, 23, 12811-12816.	3.5	43
171	Luminescence of LaF ₃ :Ln ³⁺ Nanocrystal Dispersions in Ionic Liquids. Journal of Physical Chemistry C, 2009, 113, 13532-13538.	3.1	43
172	Skeletal isomerization of octadecane on bifunctional ZSM-23 zeolite catalyst. Catalysis Letters, 2005, 100, 235-242.	2.6	42
173	Optical Property Changes in Low-k Films upon Ultraviolet-Assisted Curing. Journal of the Electrochemical Society, 2008, 155, G115.	2.9	42
174	Alkene epoxidation with mesoporous materials assembled from TS-1 seeds – Is there a hierarchical pore system?. Journal of Catalysis, 2010, 269, 367-375.	6.2	42
175	TEM Observation of Aggregation Steps in Room-Temperature Silicalite-1 Zeolite Formation. Journal of Physical Chemistry C, 2007, 111, 14283-14285.	3.1	41
176	Tunability of Pore Diameter and Particle Size of Amorphous Microporous Silica for Diffusive Controlled Release of Drug Compounds. Journal of Physical Chemistry C, 2007, 111, 13404-13409.	3.1	41
177	Progress in the Chromogenic Detection of Carbon Monoxide. Angewandte Chemie - International Edition, 2010, 49, 7629-7630.	13.8	41
178	Recovery and reuse of heteropolyacid catalyst in liquid reaction medium through reversible encapsulation in Cu3(BTC)2 metal–organic framework. Chemical Science, 2012, 3, 1847.	7.4	41
179	Hydrolysis of Dipeptides Catalyzed by a Zirconium(IV)â€Substituted Lindqvist Type Polyoxometalate. European Journal of Inorganic Chemistry, 2013, 2013, 4601-4611.	2.0	41
180	NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chemistry of Materials, 2014, 26, 5556-5565.	6.7	41

#	Article	IF	CITATIONS
181	Energy performance and climate dependency of technologies for fresh water production from atmospheric water vapour. Environmental Science: Water Research and Technology, 2020, 6, 2016-2034.	2.4	41
182	Reply to the Comment on "ldentification of Precursor Species in the Formation of MFI Zeolite in the TPAOHâ^'TEOSâ^'H2O System― Journal of Physical Chemistry B, 2002, 106, 3333-3334.	2.6	40
183	Molecular organization of hydrophobic molecules and co-adsorbed water in SBA-15 ordered mesoporous silica material. Physical Chemistry Chemical Physics, 2011, 13, 2706-2713.	2.8	40
184	Shape-Selective Catalysis with Microporous Amorphous Mixed Oxides. Angewandte Chemie International Edition in English, 1996, 35, 180-182.	4.4	39
185	Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement. Catalysis Science and Technology, 2011, 1, 218.	4.1	39
186	Zeolites X and A crystallization compared by simultaneous UV/VIS-Raman and X-ray diffraction. Physical Chemistry Chemical Physics, 2011, 13, 13730.	2.8	39
187	1-Hexene Oligomerization in Liquid, Vapor, and Supercritical Phases over Beidellite and Ultrastable Y Zeolite Catalysts. Journal of Catalysis, 1998, 179, 477-482.	6.2	38
188	Modeling of adsorption and bifunctional conversion of n-alkanes on Pt/H-ZSM-22 zeolite catalyst. Chemical Engineering Science, 1999, 54, 3553-3561.	3.8	38
189	Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:  Hydrophobization, Functionalization, and Cross-Linking of Grains. Journal of the American Chemical Society, 2007, 129, 9288-9289.	13.7	38
190	Photocatalytic growth of dendritic silver nanostructures as SERS substrates. Chemical Communications, 2012, 48, 1559-1561.	4.1	38
191	Tailored Catalytic Propene Trimerization over Acidic Zeolites with Tubular Pores. Angewandte Chemie - International Edition, 2005, 44, 5687-5690.	13.8	37
192	Platinum Particle Size and Support Effects in NOxMediated Carbon Oxidation over Platinum Catalysts. Environmental Science & En	10.0	37
193	Chronoamperometric study of membrane electrode assembly operation in continuous flow photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 9315.	2.8	37
194	Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates. Applied Catalysis B: Environmental, 2014, 160-161, 204-210.	20.2	37
195	Vapor-fed solar hydrogen production exceeding 15% efficiency using earth abundant catalysts and anion exchange membrane. Sustainable Energy and Fuels, 2017, 1, 2061-2065.	4.9	37
196	Zeolite-Inspired Low-kDielectrics Overcoming Limitations of Zeolite Films. Journal of the American Chemical Society, 2008, 130, 17528-17536.	13.7	36
197	Enantioselective Adsorption in Achiral Zeolites. Angewandte Chemie - International Edition, 2010, 49, 3010-3013.	13.8	36
198	Amorphous Silica Nanoparticles Promote Monocyte Adhesion to Human Endothelial Cells: Sizeâ€Dependent Effect. Small, 2013, 9, 430-438.	10.0	36

#	Article	IF	Citations
199	n- and Isoalkane Adsorption Mechanisms on Zeolite MCM-22. Journal of Physical Chemistry B, 2006, 110, 8551-8558.	2.6	35
200	Catalytic activity and extra-large pores of germanosilicate UTL zeolite demonstrated with decane test reaction. Catalysis Science and Technology, 2011, 1, 246.	4.1	35
201	A standardization for BET fitting of adsorption isotherms. Microporous and Mesoporous Materials, 2011, 145, 188-193.	4.4	35
202	Preventing release in the acidic environment of the stomach via occlusion in ordered mesoporous silica enhances the absorption of poorly soluble weakly acidic drugs. Journal of Pharmaceutical Sciences, 2011, 100, 4864-4876.	3.3	35
203	Use of Ordered Mesoporous Silica to Enhance the Oral Bioavailability of Ezetimibe in Dogs. Journal of Pharmaceutical Sciences, 2012, 101, 1136-1144.	3.3	35
204	Mixed matrix membranes comprising of matrimid and mesoporous COK-12: Preparation and gas separation properties. Journal of Membrane Science, 2015, 495, 471-478.	8.2	35
205	Evidence of Large Voids in Pureâ€Silicaâ€Zeolite Lowâ€ <i>k</i> Dielectrics Synthesized by Spinâ€on of Nanoparticle Suspensions. Advanced Materials, 2008, 20, 3110-3116.	21.0	34
206	Zeolite synthesis in hydrated silicate ionic liquids. Faraday Discussions, 2015, 179, 437-449.	3.2	34
207	Catalytic carbon oxidation over Ag/Al2O3. Journal of Catalysis, 2005, 236, 172-175.	6.2	33
208	Characterization of the copolymer poly(ethyleneglycol-g-vinylalcohol) as a potential carrier in the formulation of solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 239-247.	4.3	33
209	Effect of Keggin polyoxometalate on Cu(ii) speciation and its role in the assembly of Cu3(BTC)2 metal–organic framework. Journal of Materials Chemistry, 2011, 21, 9768.	6.7	33
210	UV-Raman and ²⁹ Si NMR Spectroscopy Investigation of the Nature of Silicate Oligomers Formed by Acid Catalyzed Hydrolysis and Polycondensation of Tetramethylorthosilicate. Journal of Physical Chemistry C, 2011, 115, 11077-11088.	3.1	33
211	Design of Compact Photoelectrochemical Cells for Water Splitting. Oil and Gas Science and Technology, 2015, 70, 877-889.	1.4	33
212	High-Performance CO ₂ -Selective Hybrid Membranes by Exploiting MOF-Breathing Effects. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2952-2961.	8.0	32
213	Selektive Isomerisierung kettenfĶrmiger Kohlenwasserstoffe an der Ĥğeren OberflĤhe von Zeolithkristallen. Angewandte Chemie, 1995, 107, 2726-2728.	2.0	31
214	Design of Optimum Zeolite Pore System for Central Hydrocracking of Long-Chain n-Alkanes based on a Single-Event Microkinetic Model. Topics in Catalysis, 2009, 52, 1251-1260.	2.8	31
215	Multi-level Modeling of Silica–Template Interactions During Initial Stages of Zeolite Synthesis. Topics in Catalysis, 2009, 52, 1261-1271.	2.8	31
216	<i>In Situ</i> Solid-State ¹³ C NMR Observation of Pore Mouth Catalysis in Etherification of \hat{l}^2 -Citronellene with Ethanol on Zeolite Beta. Journal of the American Chemical Society, 2016, 138, 2802-2808.	13.7	31

#	Article	IF	CITATIONS
217	Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings. PLoS ONE, 2011, 6, e24186.	2.5	31
218	Competitive physisorption effects in hydroisomerisation of n-alkane mixtures on Pt/Y and Pt/USY zeolite catalysts. Physical Chemistry Chemical Physics, 2000, 2, 1007-1014.	2.8	30
219	Influence of the zeolite composition on the hydro-isomerisation and hydrocracking of alkanes on Pt/USY zeolites: modelling of the reaction kinetics using an adsorption–reaction approach. Applied Catalysis A: General, 2003, 246, 17-28.	4.3	30
220	Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs. Therapeutic Delivery, 2011, 2, 1079-1091.	2.2	30
221	Risk assessment of premature drug release during wet granulation of ordered mesoporous silica loaded with poorly soluble compounds itraconazole, fenofibrate, naproxen, and ibuprofen. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 190-198.	4.3	30
222	Investigation of the cytotoxicity of nanozeolites A and Y. Nanotoxicology, 2012, 6, 472-485.	3.0	30
223	Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials. Minerals Engineering, 2013, 48, 116-125.	4.3	30
224	Crystallization of MAZ-type zeolites using tetramethylammonium, sodium and n-hexane derivatives as structure- and composition-directing agents. Microporous and Mesoporous Materials, 2000, 35-36, 555-572.	4.4	29
225	Decane hydroconversion on bifunctional Zeogrid and nano-zeolite assembled from aluminosilicate nanoslabs of MFI framework type. Applied Catalysis A: General, 2004, 257, 7-17.	4.3	29
226	Solar Hydrogen Reaching Maturity. Oil and Gas Science and Technology, 2015, 70, 863-876.	1.4	29
227	Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. ACS Energy Letters, 2020, 5, 1124-1127.	17.4	29
228	Shape Selective Chemistries with Modified Mordenite Zeolites. Topics in Catalysis, 2009, 52, 1175-1181.	2.8	28
229	In Situ IR Spectroscopic Investigation of Alumina ALD on Porous Silica Films: Thermal versus Plasma-Enhanced ALD. Journal of Physical Chemistry C, 2014, 118, 29854-29859.	3.1	28
230	Removal of cyclopentadiene from 1-octene by transition metal containing zeolites – Part 2: Stabilization of CoCaX zeolite by its cation distribution. Microporous and Mesoporous Materials, 2007, 103, 11-19.	4.4	27
231	Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study. Toxicology Letters, 2015, 232, 333-339.	0.8	27
232	Kinetic experiments and modeling of NO oxidation and SCR of NOx with decane over Cu- and Fe-MFI catalysts. Applied Catalysis B: Environmental, 2007, 70, 53-57.	20.2	26
233	Anisotropic Atomic Layer Deposition Profiles of TiO ₂ in Hierarchical Silica Material with Multiple Porosity. Chemistry of Materials, 2012, 24, 2775-2780.	6.7	26
234	Upscaling of the hot-melt extrusion process: Comparison between laboratory scale and pilot scale production of solid dispersions with miconazole and Kollicoat® IR. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 674-682.	4.3	26

#	Article	IF	Citations
235	Combined Experimental-Numerical Analysis of Transient Phenomena in a Photoelectrochemical Water Splitting Cell. Journal of Physical Chemistry C, 2016, 120, 3705-3714.	3.1	26
236	Effects of substitution in SAPO-n Frameworks on their Properties as Acid Catalysts. NATO ASI Series Series B: Physics, 1990, , 1-52.	0.2	26
237	Solidification of Emulsified Polymer Solutions via Phase Inversion (SEPPI): A Generic Way To Prepare Polymers with Controlled Porosity. Chemistry of Materials, 2008, 20, 3457-3465.	6.7	25
238	Comparison of the Complexation between Methylprednisolone and Different Cyclodextrins in Solution by 1H-NMR and Molecular Modeling Studies. Journal of Pharmaceutical Sciences, 2010, 99, 3863-3873.	3.3	25
239	Novel anti-infective implant substrates: Controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids and Surfaces B: Biointerfaces, 2015, 126, 481-488.	5.0	25
240	Activity versus selectivity in photocatalysis: Morphological or electronic properties tipping the scale. Journal of Catalysis, 2016, 344, 221-228.	6.2	25
241	Energyâ€Efficient Smallâ€Scale Ammonia Synthesis Process with Plasmaâ€Enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NO _{<i>x</i>} . ChemSusChem, 2022, 15, .	6.8	25
242	Spacious and mechanically flexible mesoporous silica thin film composed of an open network of interlinked nanoslabs. Journal of Materials Chemistry, 2011, 21, 7692.	6.7	24
243	Solvent Polarity-Induced Pore Selectivity in H-ZSM-5 Catalysis. ACS Catalysis, 2017, 7, 4248-4252.	11.2	24
244	Bifunctional earth-abundant phosphate/phosphide catalysts prepared <i>via</i> atomic layer deposition for electrocatalytic water splitting. Nanoscale Advances, 2019, 1, 4166-4172.	4.6	24
245	Mechanistic aspects of n-paraffins hydrocracking: Influence of zeolite morphology and acidity of Pd(Pt)/ZSM-5 catalysts. Journal of Catalysis, 2020, 389, 544-555.	6.2	24
246	Comparison of acid- to metal-catalysed conversion of n-decane and cyclodecane on ZSM-5 and faujasite-type zeolites. Journal of Molecular Catalysis, 1984, 27, 11-23.	1.2	23
247	The synthesis of zeolites under micro-gravity conditions: a review. Microporous and Mesoporous Materials, 1998, 23, 119-136.	4.4	23
248	Natural suspended particle fragmentation in magnetic scale prevention device. Chemical Engineering Science, 2009, 64, 1904-1906.	3.8	23
249	Dynamic Light Scattering (DLS) as a Tool to Detect CO2-Hydrophobin Structures and Study the Primary Gushing Potential of Beer. Journal of the American Society of Brewing Chemists, 2011, 69, 144-149.	1.1	23
250	Combined Modeling and Biophysical Characterisation of CO ₂ Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing. Journal of the American Society of Brewing Chemists, 2012, 70, 249-256.	1.1	23
251	Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition. Nanoscale, 2013, 5, 5001.	5.6	23
252	Evolution of the crystal growth mechanism of zeolite W (MER) with temperature. Microporous and Mesoporous Materials, 2019, 274, 379-384.	4.4	23

#	Article	IF	Citations
253	Ultraviolet-Assisted Curing of Organosilicate Glass Low-k Dielectric by Excimer Lamps. Journal of the Electrochemical Society, 2008, 155, G231.	2.9	22
254	Viscosity sensing in heated alkaline zeolite synthesis media. Physical Chemistry Chemical Physics, 2009, 11, 2854-2857.	2.8	22
255	Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization. Physical Chemistry Chemical Physics, 2011, 13, 4318.	2.8	22
256	Catalytic activity of germanosilicate UTL zeolite in bifunctional hydroisomerisation of n-decane. Microporous and Mesoporous Materials, 2013, 166, 153-160.	4.4	22
257	Atomâ€Efficient Route for Converting Incineration Ashes into Heavy Metal Sorbents. ChemSusChem, 2014, 7, 276-283.	6.8	22
258	Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	22
259	Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts. ACS Catalysis, 2015, 5, 6690-6695.	11.2	22
260	Absolute Quantification of Water in Microporous Solids with $\sup 1< \sup H$ Magic Angle Spinning NMR and Standard Addition. Analytical Chemistry, 2017, 89, 6940-6943.	6.5	22
261	Silicon and Aluminum Ordering in Frameworks of FAU and EMT Aluminosilicate Zeolites Crystallized in the Presence of Crown Ethers. The Journal of Physical Chemistry, 1996, 100, 4970-4975.	2.9	21
262	High-Throughput Study of Phenytoin Solid Dispersions: Formulation Using an Automated Solvent Casting Method, Dissolution Testing, and Scaling-Up. ACS Combinatorial Science, 2008, 10, 637-643.	3.3	21
263	Magnetic field assisted nanoparticle dispersion. Chemical Communications, 2008, , 47-49.	4.1	21
264	Reaction of Trimethylchlorosilane in Spin-On Silicalite-1 Zeolite Film. Langmuir, 2008, 24, 4894-4900.	3.5	21
265	Catalytic Cracking of Methylcyclohexane on FAU, MFI, and Bimodal Porous Materials: Influence of Acid Properties and Pore Topology. Industrial & Engineering Chemistry Research, 2010, 49, 10486-10495.	3.7	21
266	Investigation of Nanoparticles Occurring in the Colloidal Silicalite-1 Zeolite Crystallization Process Using Dissolution Experiments. Chemistry of Materials, 2010, 22, 3619-3629.	6.7	21
267	Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee <i>Bombus terrestris</i> Nanotoxicology, 2012, 6, 554-561.	3.0	21
268	Silica capsules enclosing P123 triblock copolymer micelles for flurbiprofen storage and release. Journal of Materials Chemistry B, 2015, 3, 3054-3061.	5.8	21
269	InÂVivo Performance of Fenofibrate Formulated With Ordered Mesoporous Silica Versus 2-Marketed Formulations: A Comparative Bioavailability Study in Beagle Dogs. Journal of Pharmaceutical Sciences, 2016, 105, 2381-2385.	3.3	21
270	Photocatalysis assisted simultaneous carbon oxidation and NOx reduction. Applied Catalysis B: Environmental, 2017, 202, 381-387.	20.2	21

#	Article	IF	Citations
271	Structural parameters governing low temperature activity of small pore copper zeolites in NH3-SCR. Journal of Catalysis, 2020, 390, 224-236.	6.2	21
272	Chlorination of a Zeolitic-Imidazolate Framework Tunes Packing and van der Waals Interaction of Carbon Dioxide for Optimized Adsorptive Separation. Journal of the American Chemical Society, 2021, 143, 4962-4968.	13.7	21
273	Matching emerging formic acid synthesis processes with application requirements. Green Chemistry, 2022, 24, 2287-2295.	9.0	21
274	Exploration of the Void Size and Structure of Zeolites and Molecular Sieves Using Chemical Reactions. Studies in Surface Science and Catalysis, 1986, 28, 23-32.	1.5	20
275	An infrared study on the location of benzene molecules and cations in Cs+-exchanged EMT zeolite. Microporous and Mesoporous Materials, 1998, 25, 151-167.	4.4	20
276	Zeolite ZSM-5 synthesized in space: catalysts with reduced external surface activity. Microporous and Mesoporous Materials, 2001, 46, 223-236.	4.4	20
277	A Unified Single-Event Microkinetic Model for Alkane Hydroconversion in Different Aggregation States on Pt/Hâ°'USY-Zeolites. Journal of Physical Chemistry B, 2006, 110, 6750-6758.	2.6	20
278	Characterization of spin-on zeolite films prepared from Silicalite-1 nanoparticle suspensions. Microporous and Mesoporous Materials, 2009, 118, 458-466.	4.4	20
279	Mayonnaise production in batch and continuous process exploiting magnetohydrodynamic force. Journal of Food Engineering, 2011, 106, 35-39.	5.2	20
280	Direct growth of Keggin polyoxometalates incorporated copper 1,3,5-benzenetricarboxylate metal organic framework films on a copper metal substrate. Thin Solid Films, 2011, 519, 5437-5440.	1.8	20
281	The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials. Materials Chemistry and Physics, 2012, 132, 1077-1088.	4.0	20
282	Stable TiO ₂ –USY zeolite composite coatings for efficient adsorptive and photocatalytic elimination of geosmin from water. Journal of Materials Chemistry A, 2015, 3, 2258-2264.	10.3	20
283	Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell. ChemSusChem, 2017, 10, 1413-1418.	6.8	20
284	Plasma-Enhanced Atomic Layer Deposition of Silver Using Ag(fod)(PEt ₃) and NH ₃ -Plasma. Chemistry of Materials, 2017, 29, 7114-7121.	6.7	20
285	Highly active oxygen evolution reaction model electrode based on supported gas-phase NiFe clusters. Catalysis Today, 2019, 334, 59-67.	4.4	20
286	Towards Green Ammonia Synthesis through Plasmaâ€Driven Nitrogen Oxidation and Catalytic Reduction. Angewandte Chemie, 2020, 132, 24033-24037.	2.0	20
287	Growth of Itraconazole Nanofibers in Supersaturated Simulated Intestinal Fluid. Molecular Pharmaceutics, 2010, 7, 905-913.	4.6	19
288	Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots. Chemical Communications, 2017, 53, 7341-7344.	4.1	19

#	Article	IF	CITATIONS
289	Rationalizing Acid Zeolite Performance on the Nanoscale by Correlative Fluorescence and Electron Microscopy. ACS Catalysis, 2017, 7, 5234-5242.	11.2	19
290	Dealumination of zeolite Y with SiCl4: a two-step reaction. Journal of the Chemical Society Chemical Communications, 1990, , 1418.	2.0	18
291	Decane Hydroisomerization Test Probing Catalytic Activity and Selectivity of Aluminum and Boron Substituted Extra-Large Pore UTL Zeolite. Topics in Catalysis, 2010, 53, 1374-1380.	2.8	18
292	NO _{<i>x</i>} Adsorption Site Engineering in Ru/Ba,Na–Y Zeolite. Chemistry of Materials, 2011, 23, 4606-4611.	6.7	18
293	Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419, 28-32.	5 . 2	18
294	In Situ FT-IR Investigation of Etravirine Speciation in Pores of SBA-15 Ordered Mesoporous Silica Material upon Contact with Water. Molecular Pharmaceutics, 2013, 10, 567-573.	4.6	18
295	Membrane Remodeling Processes Induced by Phospholipase Action. Langmuir, 2014, 30, 4743-4751.	3.5	18
296	Porous multi-junction thin-film silicon solar cells for scalable solar water splitting. Solar Energy Materials and Solar Cells, 2018, 182, 196-203.	6.2	18
297	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	2.0	18
298	Fresh water production from atmospheric air: Technology and innovation outlook. IScience, 2021, 24, 103266.	4.1	18
299	Synthesis of highly stable pure-silica thin-walled hexagonally ordered mesoporous material. Chemical Communications, 2009, , 4287.	4.1	17
300	Catalytic Cracking of 2,2,4-Trimethylpentane on FAU, MFI, and Bimodal Porous Materials: Influence of Acid Properties and Pore Topology. Industrial & Engineering Chemistry Research, 2010, 49, 6815-6823.	3.7	17
301	New mesoporous composites of gallia nanoparticles: high-throughput synthesis and catalytic application. Chemical Communications, 2010, 46, 7712.	4.1	17
302	Temperature swing adsorption of NOx over Keggin type heteropolyacids. Energy and Environmental Science, 2010, 3, 910.	30.8	17
303	Metal-Organic Frameworks as Catalysts for Organic Reactions. , 2011, , 191-212.		17
304	Novel amorphous microporous silica spheres for controlled release applications. Journal of Pharmaceutical Sciences, 2011, 100, 4295-4301.	3.3	17
305	Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air. Chemical Papers, 2014, 68, .	2.2	17
306	Postsynthetic High-Alumina Zeolite Crystal Engineering in Organic-Free Hyper-Alkaline Media. Chemistry of Materials, 2017, 29, 629-638.	6.7	17

#	Article	IF	CITATIONS
307	Isomerization and hydrocracking of decane and heptadecane on cubic and hexagonal faujasite zeolites and their intergrowth structures. Studies in Surface Science and Catalysis, 1996, 101, 721-729.	1.5	16
308	Shape-selective diisopropylation of naphthalene in H-Mordenite: Myth or reality?. Journal of Catalysis, 2010, 270, 60-66.	6.2	16
309	A Nonâ€Aqueous Synthesis of TiO ₂ /SiO ₂ Composites in Supercritical CO ₂ for the Photodegradation of Pollutants. ChemSusChem, 2011, 4, 1457-1463.	6.8	16
310	Selective Catalytic Oxidation of Ammonia into Dinitrogen over a Zeoliteâ€Supported Ruthenium Dioxide Catalyst. ChemCatChem, 2012, 4, 1162-1166.	3.7	16
311	Evaluation of hop (Humulus lupulus) as a repellent for the management of Drosophila suzukii. Crop Protection, 2019, 124, 104839.	2.1	16
312	"Click―Silica‧upported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity. Chemistry - A European Journal, 2019, 25, 6753-6762.	3.3	16
313	Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis. Materials Horizons, 2021, 8, 2576-2583.	12.2	16
314	Determination of the AlT1/AlT2 Ratio in MAZ Zeolites Using Line Shapes of MQ MAS NMR. Journal of Physical Chemistry B, 1999, 103, 8093-8096.	2.6	15
315	n-Alkane hydroconversion on Zeogrid and colloidal ZSM-5 assembled from aluminosilicate nanoslabs of MFI framework type. Chemical Communications, 2003, , 1888.	4.1	15
316	A new methodology to probe Shape Selectivity in Porous Adsorbents. Microporous and Mesoporous Materials, 2008, 116, 607-613.	4.4	15
317	Solid State Characterization and Crystal Structure from X-ray Powder Diffraction of Two Polymorphic Forms of Ranitidine Base. Journal of Pharmaceutical Sciences, 2009, 98, 146-158.	3.3	15
318	Enantioselective Adsorption Characteristics of Aluminum-Substituted MFI Zeolites. Chemistry of Materials, 2010, 22, 4591-4601.	6.7	15
319	Catalytic and molecular separation properties of Zeogrids and Zeotiles. Catalysis Today, 2011, 168, 17-27.	4.4	15
320	COKâ€16: A Cationâ€Exchanging Metal–Organic Framework Hybrid. ChemPlusChem, 2013, 78, 402-406.	2.8	15
321	Cation Exchange Properties of Zeolites in Hyper Alkaline Aqueous Media. Environmental Science & Emp; Technology, 2015, 49, 1729-1737.	10.0	15
322	Hydroisomerization and hydrocracking activity enhancement of a hierarchical ZSM-5 zeolite catalyst via atomic layer deposition of aluminium. Catalysis Science and Technology, 2016, 6, 6177-6186.	4.1	15
323	Honeycomb-shaped carbon nanotube supports for BiVO4 based solar water splitting. Nanoscale, 2019, 11, 22964-22970.	5. 6	15
324	Hierarchical ZIF-8 composite membranes: Enhancing gas separation performance by exploiting molecular dynamics in hierarchical hybrid materials. Journal of Membrane Science, 2021, 620, 118943.	8.2	15

#	Article	IF	CITATIONS
325	Photoluminescence Response of Terbium-Exchanged MFI-Type Materials to Si/Al Ratio, Texture, and Hydration State. Journal of Physical Chemistry B, 2006, 110, 25707-25715.	2.6	14
326	Effective Monte Carlo Scheme for Multicomponent Gas Adsorption and Enantioselectivity in Nanoporous Materials. Journal of Physical Chemistry Letters, 2010, 1, 2154-2158.	4.6	14
327	Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template. Nanoscale, 2014, 6, 6939.	5.6	14
328	An improved design to capture magnetic microparticles for capillary electrophoresis based immobilized microenzyme reactors. Electrophoresis, 2018, 39, 981-988.	2.4	14
329	Periodic mesoporous organosilicas as porous matrix for heterogeneous lyophobic systems. Microporous and Mesoporous Materials, 2018, 260, 166-171.	4.4	14
330	Low-temperature activation of carbon black by selective photocatalytic oxidation. Nanoscale Advances, 2019, 1, 2873-2880.	4.6	14
331	Tailoring the d-Band Center of Double-Perovskite LaCo <i>_x</i> Ni _{1–<i>x</i>} O ₃ Nanorods for High Activity in Artificial N ₂ Fixation. ACS Applied Materials & amp; Interfaces, 2021, 13, 13347-13353.	8.0	14
332	A Comparative Spectroscopic Study on the Location of Benzene and Cations in a Series of Si-Rich NaY Zeolites. Langmuir, 2001, 17, 1267-1276.	3.5	13
333	Effect of Gravity on the Gelation of Silica Sols. Chemistry of Materials, 2007, 19, 660-664.	6.7	13
334	Selective photocatalytic oxidation of gaseous ammonia to dinitrogen in a continuous flow reactor. Catalysis Science and Technology, 2012, 2, 1802.	4.1	13
335	Chabazite: Stable Cation-Exchanger in Hyper Alkaline Concrete Pore Water. Environmental Science & Environmental Science	10.0	13
336	Reversible room temperature ammonia gas absorption in pore water of microporous silica–alumina for sensing applications. Physical Chemistry Chemical Physics, 2018, 20, 13528-13536.	2.8	13
337	Creation of gallium acid and platinum metal sites in bifunctional zeolite hydroisomerization and hydrocracking catalysts by atomic layer deposition. Catalysis Science and Technology, 2020, 10, 1778-1788.	4.1	13
338	High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Science China Materials, 2022, 65, 2711-2720.	6.3	13
339	Ion-Pairs in Aluminosilicate-Alkali Synthesis Liquids Determine the Aluminum Content and Topology of Crystallizing Zeolites. Chemistry of Materials, 2022, 34, 7150-7158.	6.7	13
340	Zeotile-2: A microporous analogue of MCM-48. Solid State Sciences, 2005, 7, 861-867.	3.2	12
341	The relative atherogenicity of VLDL and LDL is dependent on the topographic site. Journal of Lipid Research, 2010, 51, 1478-1485.	4.2	12
342	Reversible NOx storage over Ru/Na–Y zeolite. Chemical Science, 2010, 1, 763.	7.4	12

#	Article	IF	Citations
343	Adsorption of Polar Enantiomers in Achiral Zeolites. Journal of Physical Chemistry C, 2013, 117, 1524-1530.	3.1	12
344	Tailoring preparation, structure and photocatalytic activity of layer-by-layer films for degradation of different target molecules. Catalysis Today, 2015, 246, 28-34.	4.4	12
345	Chemistry of the calcination of 15-crown-5 and 18-crown-6 ethers occluded in faujasite polytype zeolites. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3281.	1.7	11
346	Phosphate-Based Zeolites and Molecular Sieves. , 1999, , 53-80.		11
347	Adsorption Chemistry of Sulfur Dioxide in Hydrated Na–Y Zeolite. Angewandte Chemie - International Edition, 2004, 43, 3722-3724.	13.8	11
348	Characterization of COK-5, Member of a New Family of Zeolite Material with Multiple Channel Systems. Chemistry of Materials, 2005, 17, 5618-5624.	6.7	11
349	Prospects of transition interface sampling simulations for the theoretical study of zeolite synthesis. Physical Chemistry Chemical Physics, 2007, 9, 1044.	2.8	11
350	Phase transitions of V-Mo-W mixed oxides during reduction/re-oxidation cycles. Applied Catalysis A: General, 2010, 379, 155-165.	4.3	11
351	Kinetics of intermediate-mediated self-assembly in nanosized materials: A generic model. Journal of Chemical Physics, 2010, 132, 164701.	3.0	11
352	Agglomeration of Mesoporous Silica by Melt and Steam Granulation. Part I: A Comparison Between Disordered and Ordered Mesoporous Silica. Journal of Pharmaceutical Sciences, 2013, 102, 3966-3977.	3.3	11
353	Erbium enhanced formation and growth of photoluminescent Er/Si nanocrystals. Thin Solid Films, 2013, 536, 196-201.	1.8	11
354	Minimization of Ionic Transport Resistance in Porous Monoliths for Application in Integrated Solar Water Splitting Devices. Journal of Physical Chemistry C, 2016, 120, 21242-21247.	3.1	11
355	PDMS mixed matrix membranes filled with novel PSS-2 nanoparticles for ethanol/water separation by pervaporation. RSC Advances, 2016, 6, 78648-78651.	3.6	11
356	Intrusion–extrusion spring performance of –COK-14 zeolite enhanced by structural changes. Physical Chemistry Chemical Physics, 2016, 18, 18795-18801.	2.8	11
357	Synthesis of an IWW-type germanosilicate zeolite using 5-azonia-spiro[4,4]nonane as a structure directing agent. New Journal of Chemistry, 2016, 40, 4319-4324.	2.8	11
358	Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters. Chemistry of Materials, 2022, 34, 7139-7149.	6.7	11
359	Atomic Velocity Projection Method: A New Analysis Method for Vibrational Spectra in Terms of Internal Coordinates for a Better Understanding of Zeolite Nanogrowth. Journal of Chemical Theory and Computation, 2011, 7, 1045-1061.	5.3	10
360	Methodological Approaches Influencing Cellular Uptake and Cyto-(Geno) Toxic Effects of Nanoparticles. Journal of Biomedical Nanotechnology, 2011, 7, 3-5.	1.1	10

#	Article	IF	Citations
361	Molybdenum–vanadium–antimony mixed oxide catalyst for isobutane partial oxidation synthesized using magneto hydrodynamic forces. Applied Catalysis A: General, 2014, 474, 18-25.	4.3	10
362	Photocatalytic carbon oxidation with nitric oxide. Applied Catalysis B: Environmental, 2015, 166-167, 374-380.	20.2	10
363	Impact of Amino Acids on the Isomerization of the Aluminum Tridecamer Al ₁₃ . Inorganic Chemistry, 2017, 56, 12401-12409.	4.0	10
364	Hyperpolarized Magnetic Resonance of Exchangeable Protons Using Parahydrogen and Aminosilane. Journal of Physical Chemistry C, 2020, 124, 14541-14549.	3.1	10
365	Zeolite Effects in Organic Catalysis. , 1999, , 377-436.		10
366	Primary Cracking Modes Of Long Chain Paraffinic Hydrocarbons In Open Acid Zeolites. Studies in Surface Science and Catalysis, 1985, 20, 427-436.	1.5	9
367	Title is missing!. Angewandte Chemie, 2003, 115, 2880-2883.	2.0	9
368	Synthesis and characterization of zeogrid molecular sieves. Comptes Rendus Chimie, 2005, 8, 379-390.	0.5	9
369	Nanoporous Organosilicate Films Prepared in Acidic Conditions Using Tetraalkylammonium Bromide Porogens. Advanced Functional Materials, 2008, 18, 3332-3339.	14.9	9
370	Comment on "MELâ€type Pureâ€Silica Zeolite Nanocrystals Prepared by an Evaporationâ€Assisted Twoâ€Staş Synthesis Method as Ultra‣owâ€ <i>k</i> Materials― Advanced Functional Materials, 2010, 20, 2377-2379.	ge 14.9	9
371	Effect of Carbon Modification of Particles on Their Incorporation Rate during Electrodeposition. Journal of the Electrochemical Society, 2011, 158, D515.	2.9	9
372	Selective synthesis of 2-ethoxy alkanes through ethoxylation of 1-alkenes with bioethanol over zeolite beta catalyst in a liquid phase continuous process. Green Chemistry, 2012, 14, 1475.	9.0	9
373	Selective Hydroalkoxylation of 1â€Hexene with 1â€Propanol and 1â€Butanol over Zeolite Beta Catalyst. ChemCatChem, 2013, 5, 576-581.	3.7	9
374	Agglomeration of Mesoporous Silica by Melt and Steam Granulation. Part II: Screening of Steam Granulation Process Variables Using a Factorial Design. Journal of Pharmaceutical Sciences, 2013, 102, 3978-3986.	3.3	9
375	Use of the transpiration method to study polonium evaporation from liquid lead-bismuth eutectic at high temperature. Radiochimica Acta, 2014, 102, 1083-1091.	1.2	9
376	Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring. Journal of Chemical Education, 2014, 91, 876-879.	2.3	9
377	Moving Electrode Impedance Spectroscopy for Accurate Conductivity Measurements of Corrosive Ionic Media. ACS Sensors, 2020, 5, 3392-3397.	7.8	9
378	Hydroconversion of Perhydrophenanthrene over Bifunctional Pt/Hâ€USY Zeolite Catalyst. ChemCatChem, 2020, 12, 3477-3488.	3.7	9

#	Article	IF	Citations
379	Controlled graphite surface functionalization using contact and remote photocatalytic oxidation. Carbon, 2021, 172, 637-646.	10.3	9
380	NMR Crystallography Reveals Carbonate Induced Alâ€Ordering in ZnAl Layered Double Hydroxide. Chemistry - A European Journal, 2021, 27, 15944-15953.	3.3	9
381	Implant functionalization with mesoporous silica: A promising antibacterial strategy, but does such an implant osseointegrate?. Clinical and Experimental Dental Research, 2021, 7, 502-511.	1.9	9
382	Use of 13C CP NMR spectroscopy for the quantification of FAU/EMT zeolite intergrowths synthesized with 15-crown-5 and 18-crown-6 ethers. The Journal of Physical Chemistry, 1995, 99, 1837-1839.	2.9	8
383	Adsorption Competition Effects in Hydroconversion of Alkane Mixtures on Zeolites. International Journal of Chemical Reactor Engineering, 2003, 1 , .	1.1	8
384	Synthesis and characterization of nanocrystal zeolite/mesoporous matrix composite material. Studies in Surface Science and Catalysis, 2006, 162, 259-266.	1.5	8
385	Forty Years of Designing Catalytic and Adsorptive Sites in FAU Type Zeolites at K.U. Leuven. Topics in Catalysis, 2009, 52, 1119-1130.	2.8	8
386	Enhanced Selfâ€Assembly of Metal Oxides and Metalâ€Organic Frameworks from Precursors with Magnetohydrodynamically Induced Longâ€Lived Collective Spin States. Advanced Materials, 2014, 26, 5173-5178.	21.0	8
387	Fabrication of Nanostructured Platinum with Multilevel Porosity for Low Impedance Biomedical Recording and Stimulation Electrodes. Procedia Engineering, 2015, 120, 355-359.	1.2	8
388	Catalytic activation of all-silica COK-14 zeolite through alumination and particle size reduction using wet ball milling. Catalysis Today, 2019, 334, 3-12.	4.4	8
389	Trace Level Detection and Quantification of Crystalline Silica in an Amorphous Silica Matrix with Natural Abundance ²⁹ Si NMR. Analytical Chemistry, 2020, 92, 13004-13009.	6.5	8
390	CuO supported on COK-12 and SBA-15 ordered mesoporous materials for temperature swing SOx adsorption. Fuel Processing Technology, 2021, 211, 106586.	7.2	8
391	Interfacial study of clathrates confined in reversed silica pores. Journal of Materials Chemistry A, 2021, 9, 21835-21844.	10.3	8
392	Synthesis and characterization of cok-12 ordered mesoporous silica at room temperature under buffered quasi neutral pH. Studies in Surface Science and Catalysis, 2010, 175, 681-684.	1.5	7
393	Comparison between 2-hydroxypropyl- \hat{l}^2 -cyclodextrin and 2-hydroxypropyl- \hat{l}^3 -cyclodextrin for inclusion complex formation with danazol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 137-147.	1.6	7
394	Bone tissue response to <scp>BMP</scp> â€2 adsorbed on amorphous microporous silica implants. Journal of Clinical Periodontology, 2012, 39, 1206-1213.	4.9	7
395	In VitroandIn VivoInvestigation of the Potential of Amorphous Microporous Silica as a Protein Delivery Vehicle. BioMed Research International, 2013, 2013, 1-10.	1.9	7
396	Ternary Ag/MgOâ€SiO ₂ Catalysts for the Conversion of Ethanol into Butadiene. ChemSusChem, 2015, 8, 913-913.	6.8	7

#	Article	IF	Citations
397	Effect of a magnetic field on dispersion of a hop extract and the influence on gushing of beer. Journal of Food Engineering, 2015, 145, 10-18.	5.2	7
398	Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self-assembly. Microporous and Mesoporous Materials, 2016, 234, 186-195.	4.4	7
399	Double-Four-Ring [Si ₈ O ₁₂][OH] ₈ Cyclosilicate and Functionalized Spherosilicate Synthesis from [N(<i>n</i> b4H ₉) ₄]/Cyclosilicate Hydrate Crystals, Chemistry of Materials, 2017, 29, 5063-5069.	Â-5.33H <s< td=""><td>ub⁷>2</td></s<>	ub ⁷ >2
400	Synthesis of Microporous Silicoaluminophosphates in Hexanol—Water Biphasic Systems. ACS Symposium Series, 1989, , 305-328.	0.5	6
401	Kinetic Experiments and Modeling of a Complex DeNOxSystem:Â Decane Selective Catalytic Reduction of NOxin the Gas Phase and over an Fe-MFI Type Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 4523-4533.	3.7	6
402	Binary Phase Diagram of Tetraethyl Orthosilicate and Carbon Dioxide. Journal of Chemical & Engineering Data, 2008, 53, 2573-2575.	1.9	6
403	Synthesis and characterization of the new cyclosilicate hydrate (hexamethyleneimine)4·[Si8O16(OH)4]·12H2O. Microporous and Mesoporous Materials, 2010, 130, 14-20.	4.4	6
404	On the application of chiral amplification via adsorption. Chemical Engineering Science, 2010, 65, 6478-6485.	3.8	6
405	Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas. Chemical Engineering Journal, 2011, 175, 585-591.	12.7	6
406	Design of a Cobalt–Zeolite Catalyst for Semiâ€Linear Higherâ€Olefin Synthesis. ChemCatChem, 2012, 4, 1245-1248.	3.7	6
407	Material properties determining the insecticidal activity of highly divided porous materials on the pharaoh ant (<i>Monomorium pharaonis</i>). Pest Management Science, 2018, 74, 1374-1385.	3.4	6
408	EU-7 zeolite: a synthetic BIK type zeolite with high hydrothermal stability. Chemical Communications, 2018, 54, 5626-5629.	4.1	6
409	Solidâ€state NMR tools for the structural characterization of POSiSils: ⟨sup⟩29⟨ sup⟩Si sensitivity improvement with MCâ€CP and 2D ⟨sup⟩29⟨ sup⟩Si–⟨sup⟩29⟨ sup⟩Si DQâ€SQ at natural abundance. Magnetic Resonance in Chemistry, 2019, 57, 224-229.	1.9	6
410	Impact of the Spatial Distribution of Active Material on Bifunctional Hydrocracking. Industrial & Engineering Chemistry Research, 2021, 60, 6357-6378.	3.7	6
411	The Chemistry of the Dealumination of Faujasite Zeolites with Silicon Tetrachloride. Studies in Surface Science and Catalysis, 1991, , 355-379.	1.5	5
412	Ferromagnetically modified zeolite catalysts for liquid-phase High–Throughput Experimentation. Catalysis Today, 2011, 159, 120-125.	4.4	5
413	On the role of hydrodynamic forces in vanadium oxide nanoscroll synthesis. Catalysis Today, 2012, 192, 63-66.	4.4	5
414	Is their potential for post-synthetic brominating reactions on benzene bridged PMOs?. Microporous and Mesoporous Materials, 2012, 164, 49-55.	4.4	5

#	Article	IF	CITATIONS
415	Chromateâ€Mediated Oneâ€Step Quantitative Transformation of PW ₁₂ into P ₂ W ₂₀ Polyoxometalates. European Journal of Inorganic Chemistry, 2012, 2012, 3852-3858.	2.0	5
416	Alternating Copolymer of Double Four Ring Silicate and Dimethyl Silicone Monomer–PSSâ€1. Chemistry - A European Journal, 2017, 23, 11286-11293.	3.3	5
417	A Porous POSiSil Suited for Pressureâ€Driven Reversible Confinement of Solutions: PSSâ€2. Chemistry - A European Journal, 2019, 25, 12957-12965.	3.3	5
418	Stability of vapor phase water electrolysis cell with anion exchange membrane. Catalysis Today, 2019, 334, 243-248.	4.4	5
419	Selective electrochemical reduction of CO ₂ to formic acid in a gas phase reactor with by-product recirculation. Sustainable Energy and Fuels, 2021, 5, 1867-1873.	4.9	5
420	¹ H Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopic Analysis of Water-Extractable Arabinoxylan in Wheat (<i>Triticum aestivum</i> L.) Flour. Journal of Agricultural and Food Chemistry, 2021, 69, 3912-3922.	5.2	5
421	Insights on a Hierarchical MFI Zeolite: A Combined Spectroscopic and Catalytic Approach for Exploring the Multilevel Porous System Down to the Active Sites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49114-49127.	8.0	5
422	Spherical core–shell alumina support particles for model platinum catalysts. Nanoscale, 2021, 13, 4221-4232.	5.6	5
423	HSIL-Based Synthesis of Ultracrystalline K,Na-JBW, a Zeolite Exhibiting Exceptional Framework Ordering and Flexibility. Chemistry of Materials, 2022, 34, 7159-7166.	6.7	5
424	lodide Assisted Zeolite Catalysed 1,4-Addition of Water to Butadiene Monoxide. Journal of Catalysis, 1998, 175, 312-315.	6.2	4
425	Fine-tuning of Vanadium Oxide Nanotubes. Studies in Surface Science and Catalysis, 2010, , 249-252.	1.5	4
426	Entropyâ€Driven Chemisorption of NO _{<i>x</i>} on Phosphotungstic Acid. Angewandte Chemie - International Edition, 2012, 51, 11010-11013.	13.8	4
427	Screening protocol for identifying inorganic oxides with anti-oxidant and pro-oxidant activity for biomedical, environmental and food preservation applications. RSC Advances, 2013, 3, 900-909.	3.6	4
428	Homogeneous Tubularâ€Flow Process for Monoolein Preparation. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1525-1529.	1.9	4
429	Low-cost disposable high-pressure setup for <i>in situ</i> X-ray experiments. Journal of Synchrotron Radiation, 2018, 25, 1893-1894.	2.4	4
430	Material properties determining insecticidal activity of activated carbon on the pharaoh ant (Monomorium pharaonis). Journal of Pest Science, 2019, 92, 643-652.	3.7	4
431	Hierarchical ISI-1 zeolite catalyst for hydroconversion of long-chain paraffins. Catalysis Science and Technology, 2021, 11, 1519-1525.	4.1	4
432	Synthesis of a New Zeolite, Intergrowth of Erionite and Chabazite. , 2021, 3, 658-662.		4

#	Article	IF	CITATIONS
433	Longâ€Term Generation of Longitudinal Spin Order Controlled by Ammonia Ligation Enables Rapid SABRE Hyperpolarized 2D NMR. ChemPhysChem, 2021, 22, 1170-1177.	2.1	4
434	Shape selectivity effects in the hydroconversion of perhydrophenanthrene over bifunctional catalysts. Catalysis Science and Technology, 2021, 11, 7667-7682.	4.1	4
435	Hierarchical COK-X Materials for Applications in Catalysis and Adsorptive Separation and Controlled Release. Frontiers in Chemical Engineering, 2022, 4, .	2.7	4
436	Selective catalytic reduction of NO _{<i>x</i>} with ammonia (NH ₃ -SCR) over copper loaded LEV type zeolites synthesized with different templates. Physical Chemistry Chemical Physics, 2022, 24, 15428-15438.	2.8	4
437	A multi-perspective analysis of microclimate dynamics for air-based solar hydrogen production. Heliyon, 2022, 8, e09883.	3.2	4
438	The scientific legacy of the late Richard M. Barrer, FRS. Microporous Materials, 1997, 8, 283-284.	1.6	3
439	Ultra-violet-assisted cure of spin-on silicalite-1 films. Studies in Surface Science and Catalysis, 2007, 170, 594-599.	1.5	3
440	Letter to the Editor Regarding the Article by Wittmaack. Chemical Research in Toxicology, 2012, 25, 4-6.	3.3	3
441	Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response. Materials, 2013, 6, 5533-5548.	2.9	3
442	Single-step alcohol-free synthesis of core–shell nanoparticles of β-casein micelles and silica. RSC Advances, 2014, 4, 25650-25657.	3.6	3
443	Enantiomeric Adsorption of Lactic Acid Mixtures in Achiral Zeolites. Journal of Physical Chemistry C, 2014, 118, 14991-14997.	3.1	3
444	Hierarchical Zeolite: Catalyst Design by NH ₄ OH Treatment of USY Zeolite (Adv. Funct.) Tj ETQq0 0	0 rgBT/O	verlgck 10 Tf !
445	Selective etherification of \hat{l}^2 -citronellene catalyzed by zeolite beta. Green Chemistry, 2015, 17, 2840-2845.	9.0	3
446	Interfacial Water Drives Improved Proton Transport in Siliceous Nanocomposite Nafion Thin Films. ChemPhysChem, 2018, 19, 538-546.	2.1	3
447	Ab initio investigation of the relative stability of silicogermanates and their (Alumino)Silicates counterparts. Microporous and Mesoporous Materials, 2020, 306, 110425.	4.4	3
448	Non-Isothermal Kinetic Model of Water Vapor Adsorption on a Desiccant Bed for Harvesting Water from Atmospheric Air. Industrial & Engineering Chemistry Research, 2021, 60, 11812-11823.	3.7	3
449	Hydroconversion of Octylcyclohexane over a Bifunctional Pt/USY Zeolite Catalyst. Energy & Samp; Fuels, 2021, 35, 13955-13966.	5.1	3
450	Dispersing carbomers, mixing technology matters!. RSC Advances, 2022, 12, 7830-7834.	3.6	3

#	Article	IF	CITATIONS
451	Isotopological Fingerprinting Using ¹ H/D Scrambling Identifies the Stereochemistry of Hyperpolarization Catalysts Transferring Spin Polarization from Parahydrogen to Substrates Using Signal Amplification by Reversible Exchange. Journal of Physical Chemistry Letters, 2022, 13, 3516-3522.	4.6	3
452	Synthesis of MTT zeolite catalysts with surface Al depletion. Studies in Surface Science and Catalysis, 2006, 162, 873-880.	1.5	2
453	Sol-gel synthesis of micro- and mesoporous silica in strong mineral acid. Studies in Surface Science and Catalysis, 2010, , 801-804.	1.5	2
454	Reply to the letter of Robert Brzozowski concerning the conclusions drawn in "Shape-selective diisopropylation of naphthalene in H-Mordenite: Myth or reality?― Journal of Catalysis, 2011, 280, 142-143.	6.2	2
455	Analysis of Cuticular Lipids of the Pharaoh Ant (Monomorium pharaonis) and Their Selective Adsorption on Insecticidal Zeolite Powders. International Journal of Molecular Sciences, 2018, 19, 2797.	4.1	2
456	¹³ C-DOSY-TOSY NMR Correlation for In Situ Analysis of Structure, Size Distribution, and Dynamics of Prebiotic Oligosaccharides. Journal of Agricultural and Food Chemistry, 2020, 68, 3250-3259.	5.2	2
457	ALD Pt nanoparticles and thin-film coatings enhancing the stability and performance of silicon photocathodes for solar water splitting. Sustainable Energy and Fuels, 2021, 5, 3115-3123.	4.9	2
458	Longâ€Term Generation of Longitudinal Spin Order Controlled by Ammonia Ligation Enables Rapid SABRE Hyperpolarized 2D NMR. ChemPhysChem, 2021, 22, 1150-1150.	2.1	2
459	Reply to the "Comments on Shape-selective diisopropylation of naphthalene in H-mordenite: Myth or reality?―by Gyula Tasi and István Pálinkó. Journal of Catalysis, 2011, 279, 231.	6.2	1
460	Porous Materials: Submicrometer-Sized ZIF-71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy (Adv. Funct. Mater.) Tj ETQq0	OOLAGBT/	Overlock 10 T
461	Electrochemical impedance spectroscopy for in situ monitoring of early zeolite formation. , 2015, , .		1
462	Covalent graphite modification by low-temperature photocatalytic oxidation using a titanium dioxide thin film prepared by atomic layer deposition. Catalysis Science and Technology, 2021, 11, 6724-6731.	4.1	1
463	Oriented FAU Zeolite Films on Micrometer-Sized EMT Crystals. Advanced Materials, 1999, 11, 561-564.	21.0	1
464	PROBING THE CUT-OFF FOR INTRACRYSTALLINE ADSORPTION ON ZEOLITES: PORE MOUTH ADSORPTION. , 2003, , .		1
465	IZM-7: A new stable aluminosilicogermanate with a promising catalytic activity. Journal of Catalysis, 2021, , .	6.2	1
466	Patent section. Microporous Materials, 1993, 2, 75-77.	1.6	0
467	Unexpected microgravity effect during the self-organization of silicalite-1 nanoslabs. Microgravity Science and Technology, 2005, 16, 74-78.	1.4	0
468	Effects of Silica Sources on Nanoporous Organosilicate Films Templated with Tetraalkylammonium Cations. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	0

#	Article	IF	CITATIONS
469	Hexakis(adamantyltrimethylammonium) cyclooctasilicate tetratetracontahydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, 0619-0622.	0.4	0
470	Selective Detection of Gaseous Ammonia with Specifically Functionalized Silicon Photonic Microring Resonator: Towards Low Cost and Portable Breath Monitoring., 2013,,.		0
471	Selfâ€Assembly: Enhanced Selfâ€Assembly of Metal Oxides and Metalâ€Organic Frameworks from Precursors with Magnetohydrodynamically Induced Longâ€Lived Collective Spin States (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5223-5223.	21.0	0
472	In-situ Growth of Platinum with Hierarchical Porosity for Low Impedance Biomedical Microelectrode Fabrication. Procedia Engineering, 2016, 168, 1122-1126.	1.2	0
473	Monolithic solar water splitting: introducing porosity in multijunction solar cells with minimal degradation to enable ionic shortcuts. , 2017 , , .		0
474	ON THE DOMINANT ROLE OF ADSORPTION EFFECTS IN HETEROGENEOUS CATALYSIS. , 2003, , .		0
475	PORE SIZE EFFECTS IN THE LIQUID PHASE ADSORPTION OF ALKANES IN ZEOLITES., 2003, , .		0
476	Porosity as an Ionic Shortcut: Porous Multi-Junction Thin-Film Silicon Solar Cells for Scalable Solar Water Splitting. , 0, , .		0
477	Porosity as an Ionic Shortcut: Porous Multi-Junction Thin-Film Silicon Solar Cells for Scalable Solar Water Splitting. , 0, , .		0