Girish M Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841168/publications.pdf Version: 2024-02-01

Сірісн М Снан

#	Article	IF	CITATIONS
1	Suppression of oxidative-stress induced melanocyte death: Role of poly(ADP-ribose) polymerase in vitiligo pathogenesis. Indian Journal of Dermatology, Venereology and Leprology, 2022, 88, 413-415.	0.6	1
2	Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nature Communications, 2022, 13, 2736.	12.8	22
3	Poly(ADP-ribosyl)ation temporally confines SUMO-dependent ataxin-3 recruitment to control DNA double-strand break repair. Journal of Cell Science, 2021, 134, .	2.0	8
4	Poly (ADP-ribose) polymerase (PARP) inhibition in cancer: Potential impact in cancer stem cells and therapeutic implications. European Journal of Pharmacology, 2021, 911, 174546.	3.5	5
5	Chemotherapy-Induced Upregulation of Somatostatin Receptor-2 Increases the Uptake and Efficacy of 177Lu-DOTA-Octreotate in Neuroendocrine Tumor Cells. Cancers, 2021, 13, 232.	3.7	15
6	Combination treatments to enhance peptide receptor radionuclide therapy of neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 907-921.	6.4	21
7	Methods to Study Intracellular Movement and Localization of the Nucleotide Excision Repair Proteins at the DNA Lesions in Mammalian Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 590242.	3.7	5
8	Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	27
9	Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomaterial Detection in Consumer Care Products and in Skin Following Dermal Exposure. Chemical Research in Toxicology, 2020, 33, 1266-1278.	3.3	7
10	A panel of criteria for comprehensive assessment of severity of ultraviolet B radiation-induced non-melanoma skin cancers in SKH-1 mice. Journal of Photochemistry and Photobiology B: Biology, 2020, 205, 111847.	3.8	7
11	Potentiation of 177Lu-octreotate peptide receptor radionuclide therapy of human neuroendocrine tumor cells by PARP inhibitor. Oncotarget, 2018, 9, 24693-24706.	1.8	44
12	Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6847-E6856.	7.1	39
13	Comprehensive measurement of UVB-induced non-melanoma skin cancer burden in mice using photographic images as a substitute for the caliper method. PLoS ONE, 2017, 12, e0171875.	2.5	8
14	PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining. Molecular Cell, 2016, 61, 547-562.	9.7	214
15	Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro. Scientific Reports, 2016, 6, 19020.	3.3	20
16	Swertisin an Anti-Diabetic Compound Facilitate Islet Neogenesis from Pancreatic Stem/Progenitor Cells via p-38 MAP Kinase-SMAD Pathway: An In-Vitro and In-Vivo Study. PLoS ONE, 2015, 10, e0128244.	2.5	25
17	Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1658-1663.	7.1	148
18	PARP Inhibitors in Cancer Therapy: Magic Bullets but Moving Targets. Frontiers in Oncology, 2013, 3, 279.	2.8	19

GIRISH M SHAH

#	Article	IF	CITATIONS
19	Resistance to PARP-Inhibitors in Cancer Therapy. Frontiers in Pharmacology, 2013, 4, 18.	3.5	84
20	Approaches to Detect PARP-1 Activation In Vivo, In Situ, and In Vitro. Methods in Molecular Biology, 2011, 780, 3-34.	0.9	15
21	Common fragile sites in colon cancer cell lines: Role of mismatch repair, RAD51 and poly(ADP-ribose) polymerase-1. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 712, 40-48.	1.0	11
22	Pharmacological Inhibition of Poly(ADP-ribose) Polymerase (PARP) Activity in PARP-1 Silenced Tumour Cells Increases Chemosensitivity to Temozolomide and to a N3-Adenine Selective Methylating Agent. Current Cancer Drug Targets, 2010, 10, 368-383.	1.6	18
23	Persistence of Different Forms of Transient RNAi during Apoptosis in Mammalian Cells. PLoS ONE, 2010, 5, e12263.	2.5	2
24	Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 664, 39-47.	1.0	6
25	Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1. Cell Death and Differentiation, 2009, 16, 858-868.	11.2	39
26	Regulation of poly(ADP-ribose) polymerase-1 functions by leukocyte elastase inhibitor/LEI-derived DNase II during caspase-independent apoptosis. International Journal of Biochemistry and Cell Biology, 2009, 41, 1046-1054.	2.8	12
27	Depletion of poly(ADP-ribose) polymerase-1 reduces host cell reactivation of a UV-damaged adenovirus-encoded reporter gene in human dermal fibroblasts. DNA Repair, 2008, 7, 617-632.	2.8	29
28	Stable depletion of poly (ADP-ribose) polymerase-1 reduces in vivo melanoma growth and increases chemosensitivity. European Journal of Cancer, 2008, 44, 1302-1314.	2.8	40
29	Poly(ADP-ribose) Polymerase 1 Is Inhibited by a Histone H2A Variant, MacroH2A, and Contributes to Silencing of the Inactive X Chromosome. Journal of Biological Chemistry, 2007, 282, 12851-12859.	3.4	100
30	Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. Journal of Cell Science, 2005, 118, 589-599.	2.0	63
31	Biochemical Assessment of Niacin Deficiency Among Carcinoid Cancer Patients. American Journal of Gastroenterology, 2005, 100, 2307-2314.	0.4	88
32	DNA vector-based RNAi approach for stable depletion of poly(ADP-ribose) polymerase-1. Biochemical and Biophysical Research Communications, 2005, 331, 167-174.	2.1	21
33	Defective Control of Mitotic and Post-mitotic Checkpoints in Poly(ADP-ribose) Polymerase-1-/- Fibroblasts After Mitotic Spindle Disruption. Cell Cycle, 2004, 3, 333-340.	2.6	18
34	Defective control of mitotic and post-mitotic checkpoints in poly(ADP-ribose) polymerase-1(-/-) fibroblasts after mitotic spindle disruption. Cell Cycle, 2004, 3, 335-42.	2.6	10
35	Role of poly(ADP-ribose) polymerase in rapid intracellular acidification induced by alkylating DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 245-250.	7.1	45
36	Pharmacological Intakes of Niacin Increase Bone Marrow Poly(ADP-Ribose) and the Latency of Ethylnitrosourea-Induced Carcinogenesis in Rats. Journal of Nutrition, 2002, 132, 115-120.	2.9	31

GIRISH M SHAH

#	Article	IF	CITATIONS
37	Niacin Deficiency Decreases Bone Marrow Poly(ADP-Ribose) and the Latency of Ethylnitrosourea-Induced Carcinogenesis in Rats. Journal of Nutrition, 2002, 132, 108-114.	2.9	39
38	Niacin Deficiency in Rats Increases the Severity of Ethylnitrosourea-Induced Anemia and Leukopenia. Journal of Nutrition, 2000, 130, 1102-1107.	2.9	21
39	Survival and Proliferation of Cells Expressing Caspase-uncleavable Poly(ADP-ribose) Polymerase in Response to Death-inducing DNA Damage by an Alkylating Agent. Journal of Biological Chemistry, 1999, 274, 37097-37104.	3.4	43
40	SAPK2/p38-dependent F-Actin Reorganization Regulates Early Membrane Blebbing during Stress-induced Apoptosis. Journal of Cell Biology, 1998, 143, 1361-1373.	5.2	275
41	Cellular Responses to DNA Damage in the Absence of Poly(ADP-ribose) Polymerase. Biochemical and Biophysical Research Communications, 1998, 245, 1-10.	2.1	183
42	Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochemistry and Cell Biology, 1997, 75, 337-349.	2.0	403
43	Specific Cleavage of the Large Subunit of Replication Factor C in Apoptosis Is Mediated by CPP32-like Protease. Biochemical and Biophysical Research Communications, 1997, 233, 343-348.	2.1	18
44	Complete inhibition of poly(ADP-ribose) polymerase activity prevents the recovery of C3H1OT1/2 cells from oxidative stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 1-7.	4.1	32
45	Granzyme B/Perforin-Mediated Apoptosis of Jurkat Cells Results in Cleavage of Poly(ADP-ribose) Polymerase to the 89-kDa Apoptotic Fragment and Less Abundant 64-kDa Fragment. Biochemical and Biophysical Research Communications, 1996, 227, 658-665.	2.1	101
46	Different Cleavage Pattern for Poly(ADP-Ribose) Polymerase during Necrosis and Apoptosis in HL-60 Cells. Biochemical and Biophysical Research Communications, 1996, 229, 838-844.	2.1	151
47	New Paradigm for Lymphocyte Granule-mediated Cytotoxicity. Journal of Biological Chemistry, 1996, 271, 29073-29079.	3.4	320
48	Detection of Poly(ADP-Ribose) Polymerase and Its Apoptosis-Specific Fragment by a Nonisotopic Activity–Western Blot Technique. Analytical Biochemistry, 1995, 232, 251-254.	2.4	47
49	Methods for Biochemical Study of Poly(ADP-Ribose) Metabolism in Vitro and in Vivo. Analytical Biochemistry, 1995, 227, 1-13.	2.4	171
50	Rapid Removal of Nonspecific Background in Silver-Stained Polyacrylamide Gel. Analytical Biochemistry, 1995, 232, 138-140.	2.4	8
51	Biochemical properties and function of poly(ADP-ribose) glycohydrolase. Biochimie, 1995, 77, 433-438.	2.6	32
52	Purification of Poly(ADP-Ribose) Glycohydrolase and Detection of Its Isoforms by a Zymogram Following One- or Two-Dimensional Electrophoresis. Analytical Biochemistry, 1994, 218, 265-272.	2.4	49
53	Erasable Blot of Poly(ADP-ribose) Polymerase. Analytical Biochemistry, 1994, 218, 470-473.	2.4	25
54	Mode of action of poly(ADP-ribose) glycohydrolase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms. 1994. 1219. 342-350.	2.4	115

GIRISH M SHAH

#	Article	IF	CITATIONS
55	The effect of some new platinum (II) and palladium (II) coordination complexes on rat hepatic nuclear transcription in vitro. Life Sciences, 1992, 50, 781-790.	4.3	20
56	Oxidant Carcinogenesis and Antioxidant Defense. Annals of the New York Academy of Sciences, 1992, 663, 158-166.	3.8	71
57	Modulation of transcription in rat liver nuclei in vitro by a diol epoxide of benzo[a]pyrene. Journal of Biochemical Toxicology, 1992, 7, 13-17.	0.4	1
58	Action of some retinol derivatives and their provitamins on microsome-catalyzed formation of benzo[a]pyrene-DNA adduct. Journal of Biochemical Toxicology, 1992, 7, 177-181.	0.4	12
59	Modulation of transcription in rat liver by benzo[a]pyrene. Cancer Letters, 1987, 35, 191-198.	7.2	2
60	Modulation by plant flavonoids and related phenolics of microsome catalyzed adduct formation between benzo[a]Pyrene and DNA. Chemico-Biological Interactions, 1986, 59, 1-15.	4.0	22
61	In vivo effect of L-ascorbic acid on benzo(α)pyrene metabolite-DNA adduct formation in rat liver. Journal of Biosciences, 1982, 4, 263-268.	1.1	19