
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/684094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
2	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
3	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
4	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
5	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
6	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	21.4	408
7	Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nature Genetics, 2009, 41, 1116-1121.	21.4	389
8	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
9	Multiple loci on 8q24 associated with prostate cancer susceptibility. Nature Genetics, 2009, 41, 1058-1060.	21.4	273
10	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
11	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	6.2	201
12	Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: A case–control study. Arthritis and Rheumatism, 2008, 58, 3172-3182.	6.7	189
13	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
14	Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications, 2019, 10, 2154.	12.8	172
15	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
16	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.3	153
17	Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nature Genetics, 2013, 45, 686-689.	21.4	149
18	Multiple Novel Prostate Cancer Predisposition Loci Confirmed by an International Study: The PRACTICAL Consortium. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 2052-2061.	2.5	148

#	Article	IF	CITATIONS
19	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
20	Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nature Genetics, 2017, 49, 1133-1140.	21.4	120
21	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
22	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
23	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105
24	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.9	100
25	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	12.4	100
26	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	6.2	98
27	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
28	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
29	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
30	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
31	European polygenic risk score for prediction of breast cancer shows similar performance in Asian women. Nature Communications, 2020, 11, 3833.	12.8	88
32	Common genetic determinants of breast-cancer risk in East Asian women: a collaborative study of 23 637 breast cancer cases and 25 579 controls. Human Molecular Genetics, 2013, 22, 2539-2550.	2.9	86
33	Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nature Communications, 2018, 9, 3707.	12.8	86
34	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
35	Appraising the role of previously reported risk factors in epithelial ovarian cancer risk: A Mendelian randomization analysis. PLoS Medicine, 2019, 16, e1002893.	8.4	78
36	The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes and Control, 2015, 26, 1603-1616.	1.8	77

#	Article	IF	CITATIONS
37	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
38	Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis. PLoS Genetics, 2016, 12, e1006260.	3.5	76
39	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.9	75
40	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	2.9	67
41	The effect of <i>FTO</i> variation on increased osteoarthritis risk is mediated through body mass index: a mendelian randomisation study. Annals of the Rheumatic Diseases, 2014, 73, 2082-2086.	0.9	66
42	A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 193-200.	2.5	66
43	Cross Cancer Genomic Investigation of Inflammation Pathway for Five Common Cancers: Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Journal of the National Cancer Institute, 2015, 107, djv246.	6.3	63
44	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	6.2	59
45	Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic leukemia. Nature Communications, 2018, 9, 1340.	12.8	58
46	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	2.5	56
47	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53
48	Prediction of breast cancer risk based on common genetic variants in women of East Asian ancestry. Breast Cancer Research, 2016, 18, 124.	5.0	52
49	Evaluating Genetic Risk for Prostate Cancer among Japanese and Latinos. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 2048-2058.	2.5	51
50	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	5.1	51
51	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	7.1	51
52	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	12.8	50
53	Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nature Communications, 2020, 11, 1217.	12.8	46
54	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43

#	Article	IF	CITATIONS
55	Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study. Breast Cancer Research, 2017, 19, 119.	5.0	43
56	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	12.8	43
57	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
58	Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nature Communications, 2017, 8, 1892.	12.8	40
59	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	12.8	40
60	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
61	Evaluating genetic variants associated with breast cancer risk in high and moderate-penetrance genes in Asians. Carcinogenesis, 2017, 38, 511-518.	2.8	38
62	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	5.4	38
63	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	6.2	37
64	Genetically Predicted Levels of DNA Methylation Biomarkers and Breast Cancer Risk: Data From 228 951 Women of European Descent. Journal of the National Cancer Institute, 2020, 112, 295-304.	6.3	35
65	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
66	Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25. Human Molecular Genetics, 2015, 24, 1169-1176.	2.9	31
67	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
68	Risk of breast cancer in the UK biobank female cohort and its relationship to anthropometric and reproductive factors. PLoS ONE, 2018, 13, e0201097.	2.5	29
69	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	5.1	28
70	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	2.5	27
71	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	2.5	27
72	Polygenic risk scores for prediction of breast cancer risk in Asian populations. Genetics in Medicine, 2022, 24, 586-600.	2.4	27

#	Article	IF	CITATIONS
73	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24
74	Africanâ€ s pecific improvement of a polygenic hazard score for age at diagnosis of prostate cancer. International Journal of Cancer, 2021, 148, 99-105.	5.1	24
75	Marital status and prostate cancer incidence: a pooled analysis of 12 case–control studies from the PRACTICAL consortium. European Journal of Epidemiology, 2021, 36, 913-925.	5.7	23
76	Shingles, Zostavax vaccination and risk of developing dementia: a nested case–control study—results from the UK Biobank cohort. BMJ Open, 2021, 11, e045871.	1.9	22
77	Trends and Outcome from Radical Therapy for Primary Non-Metastatic Prostate Cancer in a UK Population. PLoS ONE, 2015, 10, e0119494.	2.5	21
78	Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes and Control, 2016, 27, 679-693.	1.8	21
79	Beer and wine consumption and risk of knee or hip osteoarthritis: a case control study. Arthritis Research and Therapy, 2015, 17, 23.	3.5	20
80	Large-scale Analysis Demonstrates Familial Testicular Cancer to have Polygenic Aetiology. European Urology, 2018, 74, 248-252.	1.9	20
81	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	3.3	19
82	Prediction models for prostate cancer to be used in the primary care setting: a systematic review. BMJ Open, 2020, 10, e034661.	1.9	19
83	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
84	Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood, 2018, 132, 2040-2052.	1.4	17
85	The association between weight at birth and breast cancer risk revisited using Mendelian randomisation. European Journal of Epidemiology, 2019, 34, 591-600.	5.7	16
86	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	3.7	16
87	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	3.9	16
88	Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. International Journal of Epidemiology, 2023, 52, 71-86.	1.9	16
89	Review of non-clinical risk models to aid prevention of breast cancer. Cancer Causes and Control, 2018, 29, 967-986.	1.8	15
90	Association of Nongenetic Factors With Breast Cancer Risk in Genetically Predisposed Groups of Women in the UK Biobank Cohort. JAMA Network Open, 2020, 3, e203760.	5.9	15

#	Article	IF	CITATIONS
91	Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Research, 2014, 16, R51.	5.0	14
92	Re-evaluating genetic variants identified in candidate gene studies of breast cancer risk using data from nearly 280,000 women of Asian and European ancestry. EBioMedicine, 2019, 48, 203-211.	6.1	14
93	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	2.8	14
94	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	3.9	14
95	Evaluation of associations between genetically predicted circulating protein biomarkers and breast cancer risk. International Journal of Cancer, 2020, 146, 2130-2138.	5.1	13
96	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12
97	Common genetic and clinical risk factors: association with fatal prostate cancer in the Cohort of Swedish Men. Prostate Cancer and Prostatic Diseases, 2021, 24, 845-851.	3.9	11
98	The functional ALDH2 polymorphism is associated with breast cancer risk: A pooled analysis from the Breast Cancer Association Consortium. Molecular Genetics & Genomic Medicine, 2019, 7, e707.	1.2	9
99	Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24. Prostate Cancer and Prostatic Diseases, 2022, 25, 229-237.	3.9	9
100	Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer. Oncotarget, 2018, 9, 12630-12638.	1.8	8
101	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	6.4	7
102	Online Decision Support Tool for Personalized Cancer Symptom Checking in the Community (REACT): Acceptability, Feasibility, and Usability Study. JMIR Cancer, 2018, 4, e10073.	2.4	7
103	A Novel Approach to Exploring Potential Interactions among Single-Nucleotide Polymorphisms of Inflammation Genes in Gliomagenesis: An Exploratory Case-Only Study. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1683-1689.	2.5	6
104	Development of a Cancer Risk Prediction Tool for Use in the UK Primary Care and Community Settings. Cancer Prevention Research, 2017, 10, 421-430.	1.5	6
105	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	6.2	6
106	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	3.3	5
107	KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Scientific Reports, 2021, 11, 9264.	3.3	5
108	Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?. Cancers, 2021, 13, 2370.	3.7	4

#	Article	IF	CITATIONS
109	Risk biomarkers enable precision in public health. Personalized Medicine, 2018, 15, 329-342.	1.5	3
110	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	3.3	2
111	Relevance of the MHC region for breast cancer susceptibility in Asians. Breast Cancer, 2022, 29, 869-879.	2.9	1
112	Relationship of self-reported body size and shape with risk for prostate cancer: A UK case-control study. PLoS ONE, 2020, 15, e0238928.	2.5	0
113	Abstract 3654: Development and application of the iHELP platform to facilitate the establishment of healthy habits for the prevention of pancreatic cancer. Cancer Research, 2022, 82, 3654-3654.	0.9	Ο
114	Abstract 2236: A novel integrated predictive model for pancreatic cancer. Cancer Research, 2022, 82, 2236-2236.	0.9	0