Amina T Schartup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6840539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	264
2	Climate change and overfishing increase neurotoxicant in marine predators. Nature, 2019, 572, 648-650.	27.8	142
3	Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11789-11794.	7.1	116
4	Methylmercury Production in Estuarine Sediments: Role of Organic Matter. Environmental Science & Technology, 2013, 47, 695-700.	10.0	111
5	A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochemical Cycles, 2016, 30, 560-575.	4.9	110
6	Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environmental Science & Technology, 2015, 49, 5965-5972.	10.0	109
7	A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton. Environmental Science & Technology, 2018, 52, 654-662.	10.0	86
8	Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea—A Baltic Sea Case Study. Environmental Science & Technology, 2016, 50, 11787-11796.	10.0	71
9	A Global Model for Methylmercury Formation and Uptake at the Base of Marine Food Webs. Global Biogeochemical Cycles, 2020, 34, e2019GB006348.	4.9	65
10	Sediment-Porewater Partitioning, Total Sulfur, and Methylmercury Production in Estuaries. Environmental Science & Technology, 2014, 48, 954-960.	10.0	63
11	Environmental Origins of Methylmercury Accumulated in Subarctic Estuarine Fish Indicated by Mercury Stable Isotopes. Environmental Science & Technology, 2016, 50, 11559-11568.	10.0	60
12	Arctic mercury cycling. Nature Reviews Earth & Environment, 2022, 3, 270-286.	29.7	60
13	Sources of water column methylmercury across multiple estuaries in the Northeast U.S Marine Chemistry, 2015, 177, 721-730.	2.3	41
14	Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous Communities. Environmental Science & Technology, 2016, 50, 13115-13122.	10.0	41
15	Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea. Global Biogeochemical Cycles, 2018, 32, 1498-1513.	4.9	36
16	Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary. Aquatic Geochemistry, 2016, 22, 313-336.	1.3	33
17	The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS ONE, 2015, 10, e0138333.	2.5	30
18	The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation, 2016, 27, 29-36.	3.0	19

Amina T Schartup

#	Article	IF	CITATIONS
19	Influence of the Arctic Sea-Ice Regime Shift on Sea-Ice Methylated Mercury Trends. Environmental Science and Technology Letters, 2020, 7, 708-713.	8.7	17
20	The Microbiome of Size-Fractionated Airborne Particles from the Sahara Region. Environmental Science & Technology, 2021, 55, 1487-1496.	10.0	12
21	What are the likely changes in mercury concentration in the Arctic atmosphere and ocean under future emissions scenarios?. Science of the Total Environment, 2022, 836, 155477.	8.0	10
22	Methylmercury as a molecular imposter. Nature Chemistry, 2022, 14, 240-240.	13.6	3
23	Selenium concentration in herring from the Baltic Sea tracks decadal and spatial trends in external sources. Environmental Sciences: Processes and Impacts, 2022, 24, 1319-1329.	3.5	2
24	Biogeochemistry: Mercury methylation on ice. Nature Microbiology, 2016, 1, 16165.	13.3	1