Jingyi Jessica Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6839936/publications.pdf

Version: 2024-02-01

		279798	149698
59	18,930	23	56
papers	citations	h-index	g-index
91	91	91	38027
71	71	71	30027
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	27.8	15,516
2	An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nature Communications, 2018, 9, 997.	12.8	495
3	Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biology, 2009, 10, R80.	9.6	313
4	Statistics or biology: the zero-inflation controversy about scRNA-seq data. Genome Biology, 2022, 23, 31.	8.8	302
5	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	27.8	289
6	System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ, 2014, 2, e270.	2.0	255
7	Comparative analysis of regulatory information and circuits across distant species. Nature, 2014, 512, 453-456.	27.8	184
8	Statistics requantitates the central dogma. Science, 2015, 347, 1066-1067.	12.6	155
9	DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in $\langle i \rangle$ Drosophila $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21330-21335.	7.1	141
10	Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19867-19872.	7.1	135
11	Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Cell Systems, 2021, 12, 176-194.e6.	6.2	99
12	Comparison of <i>D. melanogaster</i> and <i>C. elegans</i> developmental stages, tissues, and cells by modENCODE RNA-seq data. Genome Research, 2014, 24, 1086-1101.	5 . 5	88
13	Exaggerated false positives by popular differential expression methods when analyzing human population samples. Genome Biology, 2022, 23, 79.	8.8	88
14	Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in <i>Arabidopsis </i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1069-E1074.	7.1	51
15	Oct4 was a novel target of Wnt signaling pathway. Molecular and Cellular Biochemistry, 2012, 362, 233-240.	3.1	49
16	Modeling and analysis of RNAâ€seq data: a review from a statistical perspective. Quantitative Biology, 2018, 6, 195-209.	0.5	49
17	A statistical simulator scDesign for rational scRNA-seq experimental design. Bioinformatics, 2019, 35, i41-i50.	4.1	48
18	scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured. Genome Biology, 2021, 22, 163.	8.8	48

#	Article	IF	CITATIONS
19	Neyman-Pearson classification algorithms and NP receiver operating characteristics. Science Advances, 2018, 4, eaao1659.	10.3	46
20	Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution. Cell, 2018, 173, 1014-1030.e17.	28.9	39
21	DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features. Science Advances, 2020, 6, .	10.3	34
22	A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Biotechnology Progress, 2015, 31, 1026-1038.	2.6	30
23	Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes. Genome Biology, 2019, 20, 162.	8.8	29
24	The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nature Communications, 2021, 12, 5285.	12.8	29
25	Quantitating translational control: mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them. Nucleic Acids Research, 2017, 45, 11821-11836.	14.5	28
26	PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data. Genome Biology, 2021, 22, 124.	8.8	26
27	Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines. Patterns, 2020, 1, 100115.	5.9	24
28	mbImpute: an accurate and robust imputation method for microbiome data. Genome Biology, 2021, 22, 192.	8.8	23
29	Clipper: p-value-free FDR control on high-throughput data from two conditions. Genome Biology, 2021, 22, 288.	8.8	20
30	TROM: A Testing-Based Method for Finding Transcriptomic Similarity of Biological Samples. Statistics in Biosciences, 2017, 9, 105-136.	1.2	16
31	Word and Sentence Embedding Tools to Measure Semantic Similarity of Gene Ontology Terms by Their Definitions. Journal of Computational Biology, 2019, 26, 38-52.	1.6	16
32	Integrin-Src-YAP1 signaling mediates the melanoma acquired resistance to MAPK and PI3K/mTOR dual targeted therapy. Molecular Biomedicine, 2020, 1, 12.	4.4	16
33	Identifying the combinatorial control of signal-dependent transcription factors. PLoS Computational Biology, 2021, 17, e1009095.	3.2	15
34	Cellular Heterogeneity–Adjusted cLonal Methylation (CHALM) improves prediction of gene expression. Nature Communications, 2021, 12, 400.	12.8	13
35	Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis. STAR Protocols, 2021, 2, 100699.	1.2	12
36	RAD: a web application to identify region associated differentially expressed genes. Bioinformatics, 2021, 37, 2741-2743.	4.1	11

#	Article	IF	Citations
37	Large-scale mapping of mammalian transcriptomes identifies conserved genes associated with different cell states. Nucleic Acids Research, 2017, 45, gkw1256.	14.5	10
38	NMFP: a non-negative matrix factorization based preselection method to increase accuracy of identifying mRNA isoforms from RNA-seq data. BMC Genomics, 2016, 17, 11.	2.8	10
39	AIDE: annotation-assisted isoform discovery with high precision. Genome Research, 2019, 29, 2056-2072.	5.5	10
40	Bi <u>c</u> lustering of <u>Li</u> near <u>P</u> atterns In Gene Expression Data. Journal of Computational Biology, 2012, 19, 619-631.	1.6	9
41	scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling. Bioinformatics, 2021, 37, i358-i366.	4.1	9
42	Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. BMC Genomics, 2016, 17 , 10 .	2.8	7
43	EpiAlign: an alignment-based bioinformatic tool for comparing chromatin state sequences. Nucleic Acids Research, 2019, 47, e77-e77.	14.5	6
44	Network Modeling in Biology: Statistical Methods for Gene and Brain Networks. Statistical Science, 2021, 36, 89-108.	2.8	6
45	MSIQ: Joint modeling of multiple RNA-seq samples for accurate isoform quantification. Annals of Applied Statistics, 2018, 12, 510-539.	1.1	5
46	A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models. Statistica Sinica, 2020, , .	0.3	5
47	Hybrid Statistical and Mechanistic Mathematical Model Guides Mobile Health Intervention for Chronic Pain. Journal of Computational Biology, 2017, 24, 675-688.	1.6	3
48	Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons. BMC Genomics, 2017, 18, 234.	2.8	3
49	Understanding patterns and correlates of daily pain using the Sickle cell disease Mobile Application to Record Symptoms via Technology (<scp>SMART</scp>). British Journal of Haematology, 2018, 183, 306-308.	2.5	3
50	Bipartite tight spectral clustering (BiTSC) algorithm for identifying conserved gene co-clusters in two species. Bioinformatics, 2021, 37, 1225-1233.	4.1	3
51	Postoperative Admission of Adult Craniotomy Patients to the Neuroscience Ward Reduces Length of Stay and Cost. Neurosurgery, 2021, 89, 85-93.	1.1	3
52	Simulating Single-Cell Gene Expression Count Data with Preserved Gene Correlations by scDesign2. Journal of Computational Biology, 2022, 29, 23-26.	1.6	3
53	Genomic Applications of the Neyman–Pearson Classification Paradigm. , 2016, , 145-167.		2
54	The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. Rna, 2022, 28, 808-831.	3.5	2

#	Article	IF	CITATIONS
55	Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime. Bioinformatics, 2022, 38, 3927-3934.	4.1	2
56	TRANSCRIPTOME ANALYSIS USING NEXT-GENERATION SEQUENCING. , 2015, , 915-936.		1
57	A new bioinformatics tool to recover missing gene expression in single-cell RNA sequencing data. Journal of Molecular Cell Biology, 2021, 13, 1-2.	3.3	1
58	scSampler: fast diversity-preserving subsampling of large-scale single-cell transcriptomic data. Bioinformatics, 2022, 38, 3126-3127.	4.1	1
59	A flexible model-free prediction-based framework for feature ranking Journal of Machine Learning Research, 2021, 22, .	62.4	0