
Bianca Marchetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6839611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Wnt1 regulated Frizzled-1/Î ² -Cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration, 2011, 6, 49.	10.8	179
2	Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138, 869-878.	2.3	177
3	Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiology of Disease, 2011, 41, 508-527.	4.4	177
4	microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences, 2017, 18, 2698.	4.1	170
5	To be or not to be (inflamed) – is that the question in anti-inflammatory drug therapy of neurodegenerative disorders?. Trends in Pharmacological Sciences, 2005, 26, 517-525.	8.7	169
6	Inflammatory biomarkers in blood of patients with acute brain ischemia. European Journal of Neurology, 2006, 13, 505-513.	3.3	150
7	Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2470-2475.	7.1	148
8	Wnt your brain be inflamed? Yes, it Wnt!. Trends in Molecular Medicine, 2013, 19, 144-156.	6.7	147
9	Luteinizing Hormone-Releasing Hormone (LHRH) Agonist Restoration of Age-Associated Decline of Thymus Weight, Thymic LHRH Receptors, and Thymocyte Proliferative Capacity. Endocrinology, 1989, 125, 1037-1045.	2.8	133
10	Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/A-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair. Journal of Neuroscience, 2012, 32, 2062-2085.	3.6	123
11	Luteinizing Hormone-Releasing Hormone-Binding Sites in the Rat Thymus: Characteristics and Biological Function. Endocrinology, 1989, 125, 1025-1036.	2.8	110
12	Blockade of Central and Peripheral Luteinizing Hormone-Releasing Hormone (LHRH) Receptors in Neonatal Rats With a Potent LHRH-Antagonist Inhibits the Morphofunctional Development of the Thymus and Maturation of the Cell-Mediated and Humoral Immune Responses. Endocrinology, 1991, 128, 1073-1085.	2.8	110
13	Luteinizing Hormone-Releasing Hormone Signaling at the Lymphocyte Involves Stimulation of Interleukin-2 Receptor Expression. Endocrinology, 1991, 129, 277-286.	2.8	106
14	Parkinson's disease, aging and adult neurogenesis: Wnt∫î²â€catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell, 2020, 19, e13101.	6.7	105
15	Wnt/β-Catenin Signaling Is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson's Disease. Stem Cells, 2014, 32, 2147-2163.	3.2	99
16	Aging-Induced <i>Nrf2-ARE</i> Pathway Disruption in the Subventricular Zone Drives Neurogenic Impairment in Parkinsonian Mice via <i>PI3K-Wnt/</i> β <i>-Catenin</i> Dysregulation. Journal of Neuroscience, 2013, 33, 1462-1485.	3.6	90
17	Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson's Disease. International Journal of Molecular Sciences, 2018, 19, 3743.	4.1	84
18	Uncovering novel actors in astrocyte–neuron crosstalk in <scp>P</scp> arkinson's disease: the <scp>W</scp> nt/βâ€catenin signaling cascade as the common final pathway for neuroprotection and selfâ€repair. European Journal of Neuroscience, 2013, 37, 1550-1563.	2.6	81

#	Article	IF	CITATIONS
19	Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 13-26.	3.3	73
20	Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. FASEB Journal, 2004, 18, 164-166.	0.5	72
21	The role of the immune system in central nervous system plasticity after acute injury. Neuroscience, 2014, 283, 210-221.	2.3	71
22	Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Frontiers in Aging Neuroscience, 2018, 10, 12.	3.4	71
23	Prolactin Inhibits Pituitary Luteinizing Hormone-Releasing Hormone Receptors in the Rat. Endocrinology, 1982, 111, 1209-1216.	2.8	70
24	GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions. Cell Death and Disease, 2016, 7, e2206-e2206.	6.3	67
25	Thymocytes express a mRNA that is identical to hypothalamic luteinizing hormone-releasing hormone mRNA. Cellular and Molecular Neurobiology, 1992, 12, 447-454.	3.3	66
26	Unilateral ovariectomy-induced luteinizing hormone-releasing hormone content changes in the two halves of the mediobasal hypothalamus. Neuroscience Letters, 1978, 9, 333-336.	2.1	64
27	Disruption of hypothalamic-pituitary-adrenocortical system in transgenic mice expressing type II glucocorticoid receptor antisense ribonucleic acid permanently impairs T cell function: effects on T cell trafficking and T cell responsiveness during postnatal development Endocrinology, 1995, 136, 3949-3960.	2.8	64
28	Glia as a Turning Point in the Therapeutic Strategy of Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 349-372.	1.4	59
29	Glucocorticoid receptor–nitric oxide crosstalk and vulnerability to experimental parkinsonism: pivotal role for glia–neuron interactions. Brain Research Reviews, 2005, 48, 302-321.	9.0	56
30	Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. Journal of Lipid Research, 2007, 48, 782-793.	4.2	54
31	Reactive Astrocytes Are Key Players in Nigrostriatal Dopaminergic Neurorepair in the Mptp Mouse Model of Parkinson's Disease: Focus on Endogenous Neurorestoration. Current Aging Science, 2013, 6, 45-55.	1.2	54
32	Prevention of Compensatory Ovarian Hypertrophy by Local Treatment of the Ovary with 6-OHDA. Neuroendocrinology, 1978, 27, 272-278.	2.5	53
33	Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease?. Brain Research Reviews, 2008, 57, 431-443.	9.0	53
34	Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Journal of Neuroinflammation, 2010, 7, 83.	7.2	53
35	Stress, the immune system and vulnerability to degenerative disorders of the central nervous system in transgenic mice expressing glucocorticoid receptor antisense RNA. Brain Research Reviews, 2001, 37, 259-272.	9.0	52
36	A potential role for catecholamines in the development and progression of carcinogen-induced mammary tumors: Hormonal control of β-adrenergic receptors and correlation with tumor growth. Journal of Steroid Biochemistry and Molecular Biology, 1991, 38, 307-320.	2.5	50

#	Article	IF	CITATIONS
37	Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/β-Catenin Signaling. Stem Cells, 2018, 36, 1179-1197.	3.2	49
38	Hormones Are Key Actors in Gene X Environment Interactions Programming the Vulnerability to Parkinson's Disease: Glia as a Common Final Pathway. Annals of the New York Academy of Sciences, 2005, 1057, 296-318.	3.8	47
39	Switching the Microglial Harmful Phenotype Promotes Lifelong Restoration of Subtantia Nigra Dopaminergic Neurons from Inflammatory Neurodegeneration in Aged Mice. Rejuvenation Research, 2011, 14, 411-424.	1.8	45
40	Disruption of hypothalamic-pituitary-adrenocortical system in transgenic mice expressing type II glucocorticoid receptor antisense ribonucleic acid permanently impairs T cell function: effects on T cell trafficking and T cell responsiveness during postnatal development. Endocrinology, 1995, 136, 3949-3960.	2.8	45
41	Dissociated Changes of Pituitary Luteinizing Hormone-Releasing Hormone (LHRH) Receptors and Responsiveness to the Neurohormone Induced by 17β- Estradiol and LHRH in Vivo in the Rat. Endocrinology, 1981, 109, 87-93.	2.8	44
42	β-Adrenergic Receptors in the Rat Mammary Gland during Pregnancy and Lactation: Characterization, Distribution, and Coupling to Adenylate Cyclase. Endocrinology, 1990, 126, 565-574.	2.8	43
43	Cross-talk signals in the CNS Role of neurotrophic and hormonal factors adhesion molecules and intercellular signaling agents in luteinizing hormone-releasing hormone LHRH -astroglial interactive network. Frontiers in Bioscience - Landmark, 1997, 2, d88-125.	3.0	43
44	Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture. , 2000, 36, 233-253.		42
45	Luteinizing Hormoneâ€Releasing Hormone (LHRH) Receptors in the Neuroendocrineâ€Immune Network. Annals of the New York Academy of Sciences, 1996, 784, 209-236.	3.8	40
46	Activation of phospholipase A2 and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 135-150.	2.4	39
47	Modulation of Pituitary Luteinizing Hormone Releasing Hormone Receptors by Sex Steroids and Luteinizing Hormone Releasing Hormone in the Rat. Biology of Reproduction, 1982, 27, 133-145.	2.7	37
48	Neuroendocrine–immune (NEI) circuitry from neuron–glial interactions to function: Focus on gender and HPA–HPG interactions on early programming of the NEI system. Immunology and Cell Biology, 2001, 79, 400-417.	2.3	37
49	Exposure to a Dysfunctional Glucocorticoid Receptor from Early Embryonic Life Programs the Resistance to Experimental Autoimmune Encephalomyelitis Via Nitric Oxide-Induced Immunosuppression. Journal of Immunology, 2002, 168, 5848-5859.	0.8	37
50	Regulating Wnt signaling: a strategy to prevent neurodegeneration and induce regeneration. Journal of Molecular Cell Biology, 2014, 6, 1-2.	3.3	37
51	High-Resolution Respirometry Reveals MPP+ Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 7809.	4.1	37
52	Modulation of hippocampal LHRH receptors by sex steroids in the rat. Peptides, 1988, 9, 441-442.	2.4	36
53	Partial blockade of T-cell differentiation during ontogeny and marked alterations of the thymic microenvironment in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroimmunology, 1999, 98, 157-167.	2.3	36
54	Chitotriosidase in Patients with Acute Ischemic Stroke. European Neurology, 2005, 54, 149-153.	1.4	36

#	Article	IF	CITATIONS
55	Endogenous melatonin protects L-DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat: potential implication for long-term L-DOPA therapy in Parkinson's disease. Journal of Pineal Research, 2006, 40, 204-213.	7.4	34
56	Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Advanced Healthcare Materials, 2020, 9, e2000731.	7.6	34
57	Cross-talk between luteinizing hormone-releasing hormone (LHRH) neurons and astroglial cells: developing glia release factors that accelerate neuronal differentiation and stimulate LHRH release from GT1-1 neuronal cell line and LHRH neurons induce astroglia proliferation. Endocrine, 1995, 3, 863-874.	2.2	33
58	Circadian melatonin and young-to-old pineal grafting postpone aging and maintain juvenile conditions of reproductive functions in mice and rats. Experimental Gerontology, 1997, 32, 587-602.	2.8	33
59	Luteinizing Hormoneâ€Releasing Hormone Is a Primary Signaling Molecule in the Neuroimmune Network. Annals of the New York Academy of Sciences, 1998, 840, 205-248.	3.8	33
60	Characteristics of flutamide action on prostatic and testicular functions in the rat. The Journal of Steroid Biochemistry, 1988, 29, 691-698.	1.1	30
61	Effect of growth factors on nuclear and mitochondrial ADP-ribosylation processes during astroglial cell development and aging in culture. Mechanisms of Ageing and Development, 2002, 123, 511-520.	4.6	30
62	Gender, Neuroendocrineâ€Immune Interactions and Neuronâ€Glial Plasticity: Role of Luteinizing Hormoneâ€Releasing Hormone (LHRH). Annals of the New York Academy of Sciences, 2000, 917, 678-709.	3.8	30
63	Cross-Talk Communication in the Neuroendocrine-Reproductive-Immune Axis Annals of the New York Academy of Sciences, 1990, 594, 309-325.	3.8	29
64	Adrenal steroids stimulate growth and progesterone receptor levels in rat uterus and DMBA-induced mammary tumors. Breast Cancer Research and Treatment, 1986, 8, 241-248.	2.5	28
65	The immune system response during development and progression of carcinogen-induced rat mammary tumors: prevention of tumor growth and restoration of immune system responsiveness by thymopentin. Breast Cancer Research and Treatment, 1993, 27, 221-237.	2.5	28
66	The MPTP mouse model: Cues on DA release and neural stem cell restorative role. Parkinsonism and Related Disorders, 2008, 14, S189-S193.	2.2	28
67	Characterization, expression, and hormonal control of a thymic beta 2-adrenergic receptor. American Journal of Physiology - Endocrinology and Metabolism, 1994, 267, E718-E731.	3.5	26
68	Introduction. Brain Research Reviews, 2005, 48, 129-132.	9.0	26
69	Ovarian LHRH Receptors Increase following Lesions of the Major LHRH Structures in the Rat Brain: Involvement of a Direct Neural Pathway. Neuroendocrinology, 1985, 41, 321-331.	2.5	24
70	Effects of the aromatase inhibitor 4-hydroxyandrostenedione and the antiandrogen flutamide on growth and steroid levels in DMBA-induced rat mammary tumors. Breast Cancer Research and Treatment, 1988, 12, 287-296.	2.5	24
71	Castration levels of plasma testosterone have potent stimulatory effects on androgen-sensitive parameters in the rat prostate. The Journal of Steroid Biochemistry, 1988, 31, 411-419.	1.1	24
72	Beta-adrenergic receptors in DMBA-induced rat mammary tumors: Correlation with progesterone receptor and tumor growth. Breast Cancer Research and Treatment, 1989, 13, 251-263.	2.5	24

#	Article	IF	CITATIONS
73	The thymus gland as a major target for the central nervous system and the neuroendocrine system: Neuroendocrine modulation of thymic β2-Adrenergic receptor distribution as revealed by in vitro autoradiography. Molecular and Cellular Neurosciences, 1990, 1, 10-19.	2.2	24
74	Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biology, 2020, 36, 101664.	9.0	24
75	The immune response evokes up- and down-modulation of beta 2-adrenergic receptor messenger RNA concentration in the male rat thymus. Molecular Endocrinology, 1992, 6, 1513-1524.	3.7	24
76	The immune response evokes up- and down-modulation of beta 2-adrenergic receptor messenger RNA concentration in the male rat thymus Molecular Endocrinology, 1992, 6, 1513-1524.	3.7	23
77	Basic Fibroblast Growth Factor Priming Increases the Responsiveness of Immortalized Hypothalamic Luteinizing Hormone Releasing Hormone Neurones to Neurotrophic Factors. Journal of Neuroendocrinology, 2001, 12, 941-959.	2.6	23
78	High frequency of TNF alleles \$minus;238A and \$minus;376A in individuals from northern Sardinia. Cytokine, 2004, 26, 149-154.	3.2	23
79	MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 172-186.	2.4	23
80	Boosting Antioxidant Self-defenses by Grafting Astrocytes Rejuvenates the Aged Microenvironment and Mitigates Nigrostriatal Toxicity in Parkinsonian Brain via an Nrf2-Driven Wnt/Î2-Catenin Prosurvival Axis. Frontiers in Aging Neuroscience, 2020, 12, 24.	3.4	23
81	Stress, glucocorticoids and the susceptibility to develop autoimmune disorders of the central nervous system. Neurological Sciences, 2001, 22, 159-162.	1.9	22
82	Ovarian Adrenergic Nerves Directly Participate in the Control of Luteinizing Hormone-Releasing Hormone and β-Adrenergic Receptors during Puberty: A Biochemical and Autoradiographic Study. Endocrinology, 1987, 121, 219-226.	2.8	21
83	Signaling pathways in the nitric oxide and iron-induced dopamine release in the striatum of freely moving rats: Role of extracellular Ca2+ and L-type Ca2+ channels. Brain Research, 2005, 1047, 18-29.	2.2	21
84	Extracellular Vesicles as Novel Diagnostic and Prognostic Biomarkers for Parkinson's Disease. , 2021, 12, 1494.		21
85	Neuroendocrineimmunology (NEI) at the turn of the century: towards a molecular understanding of basic mechanisms and implications for reproductive physiopathology. Endocrine, 1995, 3, 845-861.	2.2	20
86	Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules, 2020, 10, 1327.	4.0	19
87	Transgenic Animals with Impaired Type II Glucocorticoid Receptor Gene Expression Annals of the New York Academy of Sciences, 1994, 719, 308-327.	3.8	18
88	The LHM-Astroglial Network of Signals as a Model to Study Neuroimmune Interactions: Assessment of Messenger Systems and Transduction Mechanisms at Cellular and Molecular Levels. NeuroImmunoModulation, 1996, 3, 1-27.	1.8	18
89	Immortalized hypothalamic luteinizing hormoneâ€releasing hormone (LHRH) neurons induce a functional switch in the growth factor responsiveness of astroglia: involvement of basic fibroblast growth factor. International Journal of Developmental Neuroscience, 2000, 18, 743-763.	1.6	18
90	Glia-Derived Extracellular Vesicles in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 1941.	2.4	18

#	Article	IF	CITATIONS
91	Opposite Changes of Pituitary and Ovarian Receptors for LHRH in Ageing Rats: Further Evidence for a Direct Neural Control of Ovarian LHRH Receptor Activity. Neuroendocrinology, 1988, 48, 242-251.	2.5	16
92	Changes in hippocampal LH-RH receptor density during maturation and aging in the rat. Developmental Brain Research, 1989, 45, 179-184.	1.7	16
93	Hormonal Regulation of β-Adrenergic Receptors in the Rat Mammary Gland during the Estrous Cycle and Lactation: Role of Sex Steroids and Prolactin. Endocrinology, 1990, 126, 575-581.	2.8	16
94	Activation of cytosolic phospholipase A2 and 15-lipoxygenase by oxidized low-density lipoproteins in cultured human lung fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 522-532.	2.4	16
95	Aging of the Reproductive-Neuroimmune Axis Annals of the New York Academy of Sciences, 1991, 621, 159-173.	3.8	15
96	Growth Factors Released from Astroglial Cells in Primary Culture Participate in the Cross Talk between Luteinizing Hormone?Releasing Hormone (LHRH) Neurons and Astrocytes Annals of the New York Academy of Sciences, 1996, 784, 513-516.	3.8	15
97	Multiple sclerosis and anti-Plasmodium falciparum innate immune response. Journal of Neuroimmunology, 2007, 185, 201-207.	2.3	15
98	A Physiological Role for the Neuropeptide Luteinizing Hormone-Releasing Hormone (LHRH) During the Maturation of Thymus Gland Function. International Journal of Neuroscience, 1990, 51, 287-289.	1.6	14
99	Involvement of CD45 in Dexamethasone- and Heat-Shock-Induced Apoptosis of Rat Thymocytes. Biochemical and Biophysical Research Communications, 1995, 214, 941-948.	2.1	14
100	The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron–glial interactions. Domestic Animal Endocrinology, 2003, 25, 21-46.	1.6	11
101	Role of endogenous melatonin in the oxidative homeostasis of the extracellular striatal compartment: a microdialysis study in PC12 cells in vitro and in the striatum of freely moving rats. Journal of Pineal Research, 2005, 39, 409-418.	7.4	10
102	Effect of 17-β estradiol and epidermal growth factor on DNA and RNA labeling in astroglial cells during development, maturation and differentiation in culture. Mechanisms of Ageing and Development, 2001, 122, 1059-1072.	4.6	8
103	Wnt3a promotes pro-angiogenic features in macrophages <i>in vitro</i> : Implications for stroke pathology. Experimental Biology and Medicine, 2018, 243, 22-28.	2.4	8
104	" <i>Reframing</i> ―dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate <i>Nrf2/Wnt</i> driver: Therapeutical implications. Aging Cell, 2022, 21, e13575.	6.7	8
105	Phosphatidylserine counteracts physiological and pharmacological suppression of humoral immune response. Immunopharmacology, 1990, 19, 185-195.	2.0	7
106	Apoptotic Cell Death and Amyloid Precursor Protein Signaling in Neuroblastoma SHâ€&Y5Y Cells. Annals of the New York Academy of Sciences, 2004, 1030, 339-347.	3.8	7
107	Specificity of the direct effect of an LHRH agonist on testicular 17-hydroxylase but not on 5î±-reductase activity in hypophysectomized adult rats. Molecular and Cellular Endocrinology, 1985, 40, 33-40.	3.2	6
108	Vulnerability to Parkinson's Disease: Towards an Unifying Theory of Disease Etiology. , 2011, , 690-704.		6

#	Article	IF	CITATIONS
109	Further characterization of the direct inhibitory effect of LHRH agonists at the testicular level in the rat. The Journal of Steroid Biochemistry, 1984, 20, 339-342.	1.1	5
110	Central nervous system (CNS) modulation of immune system development: Role of the thymic beta2-adrenergic receptor. Pharmacological Research, 1990, 22, 47-48.	7.1	5
111	Peptidergic modulation of immune system development: Role of luteinizing hormone-releasing hormone. Pharmacological Research, 1990, 22, 97-98.	7.1	5
112	Upregulation of lymphocyte β-adrenergic receptor in Down's syndrome: a biological marker of a neuroimmune deficit. Journal of Neuroimmunology, 1992, 38, 185-198.	2.3	5
113	Insulin-like Growth Factor-I Effects on ADP-Ribosylation Processes and Interactions with Glucocorticoids During Maturation and Differentiation of Astroglial Cells in Primary Culture. , 1998, , 127-134.		5
114	Gonadal LHRH Receptors and Direct Gonadal Effects of LHRH Agonists. Frontiers of Hormone Research, 1981, 10, 33-42.	1.0	3
115	Therapeutic Perspectives in Psychoneuroendocrinimmunology(PNEI): Potential Role of Phosphatidylserine in Neuroendocrine-Immune Communications. International Journal of Neuroscience, 1990, 51, 299-301.	1.6	3
116	Neurochemical, immunological and pharmacological assessments in a transgenic mouse model of the endocrine changes in depression. Aging Clinical and Experimental Research, 1997, 9, 26-27.	2.9	3
117	Monoaminergic regulation of lhrh in the organon vasculosum of lamina terminalls (OVLT). Pharmacological Research Communications, 1980, 12, 385-391.	0.2	2
118	Neuroendocrine modulation of lymphocyte's activity during the physiological menstrual cycle. Pharmacological Research, 1990, 22, 101-102.	7.1	2
119	Brain dysfunction and the immune system: Lymphocyte's beta-adrenergic receptor in down syndrome. Pharmacological Research, 1990, 22, 49-50.	7.1	0
120	Neuroendocrine-immune interactions in the control of reproduction. Pharmacological Research, 1992, 26, 114.	7.1	0