
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6839373/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.                                                                               | 13.3 | 68        |
| 2  | Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Science Advances, 2022, 8, eabn8264.                                     | 4.7  | 80        |
| 3  | Mechanical regulation of cell-cycle progression and division. Trends in Cell Biology, 2022, 32, 773-785.                                                                                  | 3.6  | 18        |
| 4  | Transient mechanical interactions between cells and viscoelastic extracellular matrix. Soft Matter, 2021, 17, 10274-10285.                                                                | 1.2  | 11        |
| 5  | The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Science Advances, 2021, 7, .                                  | 4.7  | 45        |
| 6  | Modeling the tumor immune microenvironment for drug discovery using 3D culture. APL<br>Bioengineering, 2021, 5, 010903.                                                                   | 3.3  | 14        |
| 7  | A dysfunctional TRPV4–GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity. Nature Biomedical Engineering, 2021, 5, 1472-1484. | 11.6 | 42        |
| 8  | Magnetic probe-based microrheology reveals local softening and stiffening of 3D collagen matrices by fibroblasts. Biomedical Microdevices, 2021, 23, 27.                                  | 1.4  | 14        |
| 9  | Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nature Materials, 2021, 20, 1290-1299.                                                                   | 13.3 | 111       |
| 10 | Cells under pressure. ELife, 2021, 10, .                                                                                                                                                  | 2.8  | 5         |
| 11 | Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. Cell Reports, 2021, 35, 109047.                        | 2.9  | 14        |
| 12 | Tuning Viscoelasticity in Alginate Hydrogels for 3D Cell Culture Studies. Current Protocols, 2021, 1, e124.                                                                               | 1.3  | 34        |
| 13 | The nature of cell division forces in epithelial monolayers. Journal of Cell Biology, 2021, 220, .                                                                                        | 2.3  | 15        |
| 14 | Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell<br>Morphogenesis in 3D Culture. Advanced Materials, 2021, 33, e2101966.                        | 11.1 | 60        |
| 15 | Epigenetic regulation of mechanotransduction. Nature Biomedical Engineering, 2021, 5, 8-10.                                                                                               | 11.6 | 8         |
| 16 | Cellular Pushing Forces during Mitosis Drive Mitotic Elongation in Collagen Gels. Advanced Science,<br>2021, 8, 2000403.                                                                  | 5.6  | 8         |
| 17 | Relative strain is a novel predictor of aneurysmal degeneration of the thoracic aorta: An ex vivo mechanical study. JVS Vascular Science, 2021, 2, 235-246.                               | 0.4  | 3         |
| 18 | Covalent cross-linking of basement membrane-like matrices physically restricts invasive protrusions<br>in breast cancer cells. Matrix Biology, 2020, 85-86, 94-111.                       | 1.5  | 27        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Roles of Interactions Between Cells and Extracellular Matrices for Cell Migration and Matrix<br>Remodeling. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 247-282.                  | 0.7  | 1         |
| 20 | Increased Stiffness Inhibits Invadopodia Formation and Cell Migration in 3D. Biophysical Journal, 2020, 119, 726-736.                                                                                         | 0.2  | 25        |
| 21 | Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.                                                                                                            | 13.7 | 1,045     |
| 22 | Introduction to Editorial Board Member: Professor David J. Mooney. Bioengineering and Translational<br>Medicine, 2020, 5, e10162.                                                                             | 3.9  | 0         |
| 23 | Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioengineering, 2020, 4, 010906.                                                                                                     | 3.3  | 8         |
| 24 | Nonlinear Elastic and Inelastic Properties of Cells. Journal of Biomechanical Engineering, 2020, 142, .                                                                                                       | 0.6  | 14        |
| 25 | Beyond proteases: Basement membrane mechanics and cancer invasion. Journal of Cell Biology, 2019, 218, 2456-2469.                                                                                             | 2.3  | 146       |
| 26 | Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nature Biomedical Engineering, 2019, 3, 1009-1019.                                         | 11.6 | 135       |
| 27 | The evolution of spindles and their mechanical implications for cancer metastasis. Cell Cycle, 2019, 18, 1671-1675.                                                                                           | 1.3  | 4         |
| 28 | Cell cycle progression in confining microenvironments is regulated by a growth-responsive<br>TRPV4-PI3K/Akt-p27 <sup>Kip1</sup> signaling axis. Science Advances, 2019, 5, eaaw6171.                          | 4.7  | 107       |
| 29 | Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nature Communications, 2019, 10, 529.                                                                   | 5.8  | 128       |
| 30 | YAP-independent mechanotransduction drives breast cancer progression. Nature Communications, 2019, 10, 1848.                                                                                                  | 5.8  | 127       |
| 31 | Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials, 2019, 200, 15-24.                                                                       | 5.7  | 172       |
| 32 | Identification of cell context-dependent YAP-associated proteins reveals β1 and β4 integrin mediate YAP translocation independently of cell spreading. Scientific Reports, 2019, 9, 17188.                    | 1.6  | 11        |
| 33 | Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E2686-E2695. | 3.3  | 183       |
| 34 | Dynamic Hyaluronan Hydrogels with Temporally Modulated High Injectability and Stability Using a<br>Biocompatible Catalyst. Advanced Materials, 2018, 30, e1705215.                                            | 11.1 | 100       |
| 35 | Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nature Physics, 2018, 14, 621-628.                                                                   | 6.5  | 79        |
| 36 | Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical<br>Journal, 2018, 114, 450-461.                                                                                | 0.2  | 108       |

| #  | Article                                                                                                                                                                                    | IF         | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 37 | Regulation of Breast Cancer Progression by Extracellular Matrix Mechanics: Insights from 3D<br>Culture Models. ACS Biomaterials Science and Engineering, 2018, 4, 302-313.                 | 2.6        | 36            |
| 38 | Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials, 2018, 154, 213-222.            | 5.7        | 368           |
| 39 | Evaluation of a bioengineered construct for tissue engineering applications. Journal of Biomedical<br>Materials Research - Part B Applied Biomaterials, 2018, 106, 2345-2354.              | 1.6        | 12            |
| 40 | Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments.<br>Nature Communications, 2018, 9, 4144.                                                 | 5.8        | 263           |
| 41 | New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQq1 1 0.7843                                                                             | 14 rgBT /C | overlock 10 T |
| 42 | Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nature<br>Materials, 2017, 16, 1233-1242.                                                      | 13.3       | 310           |
| 43 | Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nature Materials, 2017, 16, 1243-1251.                                                                        | 13.3       | 348           |
| 44 | 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix. Methods in Molecular<br>Biology, 2017, 1612, 29-37.                                                               | 0.4        | 24            |
| 45 | Viscoelastic hydrogels for 3D cell culture. Biomaterials Science, 2017, 5, 1480-1490.                                                                                                      | 2.6        | 230           |
| 46 | Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 5492-5497. | 3.3        | 217           |
| 47 | CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials, 2016, 98, 152-162.                                            | 5.7        | 34            |
| 48 | Viscoplasticity Enables Mechanical Remodeling ofÂMatrix by Cells. Biophysical Journal, 2016, 111, 2296-2308.                                                                               | 0.2        | 144           |
| 49 | Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.                                                                        | 13.3       | 1,650         |
| 50 | Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6, 6364.                                                                                                | 5.8        | 637           |
| 51 | Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomaterialia, 2015, 26, 1-12.                                                                       | 4.1        | 23            |
| 52 | Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneÂformation.<br>Nature Materials, 2015, 14, 1269-1277.                                             | 13.3       | 390           |
| 53 | Biological materials and molecular biomimetics – filling up the empty soft materials space for tissue engineering applications. Journal of Materials Chemistry B, 2015, 3, 13-24.          | 2.9        | 49            |
| 54 | Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects. Acta<br>Biomaterialia, 2014, 10, 4390-4399.                                                    | 4.1        | 82            |

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Influence of the stiffness of three-dimensional alginate/collagen-l interpenetrating networks on fibroblast biology. Biomaterials, 2014, 35, 8927-8936.           | 5.7  | 226       |
| 56 | Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978. | 13.3 | 689       |
| 57 | Highly stretchable and tough hydrogels. Nature, 2012, 489, 133-136.                                                                                               | 13.7 | 4,089     |
| 58 | Anchoring cell-fate cues. Nature Materials, 2012, 11, 568-569.                                                                                                    | 13.3 | 60        |
| 59 | Actin filament curvature biases branching direction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2913-2918.       | 3.3  | 159       |
| 60 | Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nature<br>Materials, 2011, 10, 61-66.                                | 13.3 | 289       |
| 61 | Protrusive Forces Generated by Dendritic Actin Networks During Cell Crawling. , 2010, , 359-379.                                                                  |      | 2         |
| 62 | Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells.<br>Nature Methods, 2009, 6, 383-387.                              | 9.0  | 146       |
| 63 | Differential force microscope for long time-scale biophysical measurements. Review of Scientific<br>Instruments, 2007, 78, 043711.                                | 0.6  | 17        |
| 64 | Reversible stress softening of actin networks. Nature, 2007, 445, 295-298.                                                                                        | 13.7 | 335       |
| 65 | Loading history determines the velocity of actin-network growth. Nature Cell Biology, 2005, 7, 1219-1223.                                                         | 4.6  | 202       |