Oleg Borisov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6836822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precise hierarchical self-assembly of multicompartment micelles. Nature Communications, 2012, 3, 710.	12.8	504
2	Coil-globule type transitions in polymers. 1. Collapse of layers of grafted polymer chains. Macromolecules, 1991, 24, 140-149.	4.8	380
3	Theory of Ionizable Polymer Brushes. Macromolecules, 1995, 28, 1491-1499.	4.8	312
4	Polyelectrolyte brushes. Current Opinion in Colloid and Interface Science, 2006, 11, 316-323.	7.4	286
5	Diagram of the States of a Grafted Polyelectrolyte Layer. Macromolecules, 1994, 27, 4795-4803.	4.8	222
6	Theory of Block Polymer Micelles: Recent Advances and Current Challenges. Macromolecules, 2012, 45, 4429-4440.	4.8	206
7	Structure and interaction of weakly charged polyelectrolyte brushes: Self-consistent field theory. Journal of Chemical Physics, 1997, 107, 5952-5967.	3.0	205
8	Screening Effects in a Polyelectrolyte Brush:Â Self-Consistent-Field Theory. Macromolecules, 2000, 33, 4945-4953.	4.8	144
9	Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nature Communications, 2016, 7, 12097.	12.8	140
10	Bending Rigidity and Induced Persistence Length of Molecular Bottle Brushes:Â A Self-Consistent-Field Theory. Macromolecules, 2005, 38, 8891-8901.	4.8	122
11	Collapse of grafted polyelectrolyte layer. Journal De Physique II, 1991, 1, 521-526.	0.9	115
12	Proteins and polyelectrolytes: A charged relationship. Current Opinion in Colloid and Interface Science, 2012, 17, 90-96.	7.4	101
13	Screening in Solutions of Star-Branched Polyelectrolytes. Macromolecules, 1999, 32, 2365-2377.	4.8	93
14	Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment. Advances in Polymer Science, 2011, , 57-129.	0.8	78
15	On the Mechanism of Uptake of Globular Proteins by Polyelectrolyte Brushes:Â A Two-Gradient Self-Consistent Field Analysis. Langmuir, 2007, 23, 3937-3946.	3.5	77
16	Self-Assembly in Solution of Block Copolymers with Annealing Polyelectrolyte Blocks. Macromolecules, 2002, 35, 9191-9203.	4.8	68
17	Annealed Star-Branched Polyelectrolytes in Solution. Macromolecules, 2002, 35, 9176-9190.	4.8	67
18	Dendritic versus Linear Polymer Brushes: Self-Consistent Field Modeling, Scaling Theory, and Experiments. Macromolecules, 2010, 43, 9555-9566.	4.8	65

#	Article	IF	CITATIONS
19	Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States. Macromolecules, 2018, 51, 3788-3801.	4.8	60
20	Cylindrical molecular brushes under poor solvent conditions: microscopic observation and scaling analysis. European Physical Journal E, 2004, 13, 125-131.	1.6	59
21	Modeling of Ionization and Conformations of Starlike Weak Polyelectrolytes. Macromolecules, 2014, 47, 4004-4016.	4.8	58
22	Dendron brushes and dendronized polymers: a theoretical outlook. Soft Matter, 2014, 10, 2093-2101.	2.7	51
23	Pearl-Necklace Structures in Coreâ^'Shell Molecular Brushes: Experiments, Monte Carlo Simulations, and Self-Consistent Field Modeling. Macromolecules, 2008, 41, 4020-4028.	4.8	45
24	Conformations of Star-Branched Polyelectrolytes. Journal De Physique II, 1996, 6, 1-19.	0.9	44
25	pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Overloo Microbalance with Dissipation Monitoring. Langmuir, 2015, 31, 7684-7694.	ck 10 Tf 50 3.5	507 Td (acid 40
26	Interpolyelectrolyte Complexes Based on Polyionic Species of Branched Topology. Advances in Polymer Science, 2010, , 131-161.	0.8	38
27	Scaling Theory of Complex Coacervate Core Micelles. ACS Macro Letters, 2018, 7, 811-816.	4.8	38
28	Block Copolymer Micelles for Photonic Fluids and Crystals. ACS Nano, 2018, 12, 3149-3158.	14.6	36
29	Microphase Separation in Complex Coacervate Due to Incompatibility between Polyanion and Polycation. Macromolecules, 2018, 51, 6587-6601.	4.8	36
30	Dendritic Spherical Polymer Brushes: Theory and Self-Consistent Field Modeling. Macromolecules, 2013, 46, 4651-4662.	4.8	35
31	Charge-controlled nano-structuring in partially collapsed star-shaped macromolecules. Soft Matter, 2016, 12, 4846-4852.	2.7	34
32	A self-consistent mean-field model for polyelectrolyte gels. Soft Matter, 2017, 13, 3264-3274.	2.7	34
33	Microphase Segregation in the Melts of Bottlebrush Block Copolymers. Macromolecules, 2020, 53, 2582-2593.	4.8	32
34	Interpolyelectrolyte Complexes between Starlike and Linear Macromolecules: A Structural Model for Nonviral Gene Vectors. Langmuir, 2009, 25, 1915-1918.	3.5	30
35	Effect of Block Copolymer Architecture on Morphology of Self-Assembled Aggregates in Solution. ACS Macro Letters, 2013, 2, 292-295.	4.8	30
36	On the Curvature Energy of a Thin Membrane Decorated by Polymer Brushes. Macromolecules, 2008, 41, 478-488.	4.8	29

#	Article	IF	CITATIONS
37	Theory of Brushes Formed by Î ⁻ -Shaped Macromolecules at Solid–Liquid Interfaces. Langmuir, 2015, 31, 6514-6522.	3.5	29
38	Solution and Melts of Barbwire Bottlebrushes: Hierarchical Structure and Scale-Dependent Elasticity. Macromolecules, 2019, 52, 1671-1684.	4.8	28
39	Interactions between Brushes of Root-Tethered Dendrons. Macromolecules, 2014, 47, 6932-6945.	4.8	27
40	Brushes of Cycled Macromolecules: Structure and Lubricating Properties. Macromolecules, 2016, 49, 8758-8767.	4.8	27
41	Starburst Polyelectrolytes:Â Scaling and Self-Consistent-Field Theory. Macromolecules, 2003, 36, 6624-6631.	4.8	26
42	Ideal Mixing in Multicomponent Brushes of Branched Polymers. Macromolecules, 2015, 48, 8025-8035.	4.8	26
43	Conformations and Solution Properties of Star-Branched Polyelectrolytes. Advances in Polymer Science, 2010, , 1-55.	0.8	25
44	Counterion Localization in Solutions of Starlike Polyelectrolytes and Colloidal Polyelectrolyte Brushes: A Self-Consistent Field Theory. Langmuir, 2008, 24, 10026-10034.	3.5	24
45	Polysoaps:Â Extension and Compression. Macromolecules, 1997, 30, 4432-4444.	4.8	22
46	Persistence length of dendronized polymers: the self-consistent field theory. Soft Matter, 2015, 11, 9367-9378.	2.7	22
47	Self-consistent field theory of polyelectrolyte brushes with finite chain extensibility. Journal of Chemical Physics, 2017, 146, 214901.	3.0	22
48	Brushes of Dendritically Branched Polyelectrolytes. Macromolecules, 2015, 48, 1499-1508.	4.8	21
49	Absorption of a Polyelectrolyte Brush into an Oppositely Charged Layer. Macromolecules, 1998, 31, 7413-7422.	4.8	20
50	Dendron and Hyperbranched Polymer Brushes in Good and Poor Solvents. Langmuir, 2017, 33, 1315-1325.	3.5	20
51	On the elasticity of polysoaps: The effects of secondary structure. Europhysics Letters, 1996, 34, 657-662.	2.0	19
52	A Quantitative Theory of Mechanical Unfolding of a Homopolymer Globule. Macromolecules, 2010, 43, 1629-1643.	4.8	19
53	Interplay of Thermosensitivity and pH Sensitivity of Amphiphilic Block–Gradient Copolymers of Dimethylaminoethyl Acrylate and Styrene. Macromolecules, 2018, 51, 5219-5233.	4.8	19
54	Mechanical Unfolding of a Homopolymer Globule Studied by Self-Consistent Field Modeling. Macromolecules, 2009, 42, 5360-5371.	4.8	17

#	Article	IF	CITATIONS
55	Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory. Soft Matter, 2018, 14, 6230-6242.	2.7	16
56	Collapse of a weak polyelectrolyte star in a poor solvent. Soft Matter, 2012, 8, 9446.	2.7	15
57	Theory of Microphase Segregation in the Melts of Copolymers with Dendritically Branched, Bottlebrush, or Cycled Blocks. ACS Macro Letters, 2019, 8, 1075-1079.	4.8	14
58	Self-Assembly of Linear-Dendritic and Double Dendritic Block Copolymers: From Dendromicelles to Dendrimersomes. Macromolecules, 2019, 52, 3655-3667.	4.8	14
59	Thermodynamics of the multi-stage self-assembly of pH-sensitive gradient copolymers in aqueous solutions. Soft Matter, 2016, 12, 6788-6798.	2.7	13
60	Theory of Linear–Dendritic Block Copolymer Micelles. ACS Macro Letters, 2018, 7, 42-46.	4.8	12
61	Proteins and Polyampholytes Interacting with Polyelectrolyte Brushes and Microgels: The Charge Reversal Concept Revised. Langmuir, 2021, 37, 2865-2873.	3.5	10
62	Temperature-Induced Re-Entrant Morphological Transitions in Block-Copolymer Micelles. Langmuir, 2019, 35, 2680-2691.	3.5	9
63	Effect of the Ionic Strength on Collapse Transition in Starâ€like Polyelectrolytes. Macromolecular Symposia, 2009, 278, 24-31.	0.7	8
64	Structure and lubrication of solvent-free dendron brushes. Polymer, 2017, 120, 223-235.	3.8	8
65	Self-Assembly of Bottlebrush Block Copolymers in Selective Solvent: Micellar Structures. Polymers, 2021, 13, 1351.	4.5	8
66	Bottlebrush polymer gels: architectural control over swelling and osmotic bulk modulus. Soft Matter, 2022, 18, 1239-1246.	2.7	8
67	Brushes and lamellar mesophases of comb-shaped (co)polymers: a self-consistent field theory. Physical Chemistry Chemical Physics, 2020, 22, 23385-23398.	2.8	7
68	Polymer Networks Formed by Molecular Brushes: Scaling Theory. Polymer Science - Series A, 2019, 61, 799-804.	1.0	6
69	SCF Theory of Uniformly Charged Dendrimers: Impact of Asymmetry of Branching, Generation Number, and Salt Concentration. Macromolecules, 2020, 53, 7298-7311.	4.8	6
70	Micelles Formed by an AB Copolymer with Bottlebrush Blocks: Scaling Theory. Journal of Physical Chemistry B, 2021, 125, 12603-12616.	2.6	6
71	Colloidal particles interacting with a polymer brush: a self-consistent field theory. Physical Chemistry Chemical Physics, 2022, 24, 8463-8476.	2.8	6
72	Intramolecular micellization and nanopatterning in pH- and thermo-responsive molecular brushes. Soft Matter, 2020, 16, 208-218.	2.7	5

#	Article	IF	CITATIONS
73	Theory of Microphase Segregation in ABA Triblock Comb-Shaped Copolymers: Lamellar Mesophase. Macromolecules, 2021, 54, 4747-4759.	4.8	5
74	Impact of Macromolecular Architecture on Bending Rigidity of Dendronized Surfaces. Macromolecules, 2018, 51, 3315-3329.	4.8	4
75	Dendron Brushes in Polymer Medium: Interpenetration and Depletion. Macromolecules, 2020, 53, 387-397.	4.8	4
76	Unfolding of a comb-like polymer in a poor solvent: translation of macromolecular architecture in the force–deformation spectra. Soft Matter, 2017, 13, 9147-9161.	2.7	3
77	Planar Brush of End-Tethered Molecular Bottle-Brushes. Scaling Mode. Polymer Science - Series C, 2018, 60, 76-83.	1.7	3
78	Polymer Brush in a Nanopore: Effects of Solvent Strength and Macromolecular Architecture Studied by Self-Consistent Field and Scaling Theory. Polymers, 2021, 13, 3929.	4.5	3
79	Theory of polyelectrolyte dendrigrafts. Colloid and Polymer Science, 2020, 298, 951-959.	2.1	2
80	Amphiphilic Gradient Copolymers: Synthesis and Self&;#x02010;Assembly in AQUEOUS SOLUTION. , 2016, , 83-124.		1
81	Bending moduli of dendritic polymer brushes in a good solvent. Polymer Science - Series A, 2017, 59, 772-783.	1.0	1
82	Non-linear elasticity effects and stratification in brushes of branched polyelectrolytes. Journal of Chemical Physics, 2019, 151, 214902.	3.0	1
83	Cascades of unfolding transitions in amphiphilic molecular brushes. Journal of Chemical Physics, 2020, 152, 081101.	3.0	1
84	Theory of Mesophases of Triblock Comb-Shaped Copolymers: Effects of Dead Zones and Bridging. Macromolecules, 2022, 55, 6040-6055.	4.8	1
85	Theory of Y―and Comb‣haped Polymer Brushes: The Parabolic Potential Framework. Macromolecular Theory and Simulations, 0, , 2100037.	1.4	0