Lucy A Weinert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6835706/publications.pdf Version: 2024-02-01

LUCY A WEINERT

#	Article	IF	CITATIONS
1	An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia. Science, 2011, 334, 94-98.	12.6	675
2	The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150249.	2.6	414
3	A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant <i>Staphylococcus aureus</i> pandemic. Genome Research, 2013, 23, 653-664.	5.5	412
4	Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18732-18736.	7.1	375
5	Historical variations in mutation rate in an epidemic pathogen, <i>Yersinia pestis</i> . Proceedings of the United States of America, 2013, 110, 577-582.	7.1	373
6	Recent human-to-poultry host jump, adaptation, and pandemic spread of <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19545-19550.	7.1	363
7	Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis. PLoS Genetics, 2013, 9, e1003896.	3.5	277
8	Transmission Network Parameters Estimated From HIV Sequences for a Nationwide Epidemic. Journal of Infectious Diseases, 2011, 204, 1463-1469.	4.0	184
9	Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1003129.	3.5	178
10	Livestock Origin for a Human Pandemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus. MBio, 2013, 4, .	4.1	177
11	Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation. Genome Biology and Evolution, 2010, 2, 454-466.	2.5	174
12	Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecology and Evolution, 2018, 2, 1468-1478.	7.8	156
13	Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nature Communications, 2015, 6, 6740.	12.8	124
14	Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes. Molecular Biology and Evolution, 2014, 31, 2780-2792.	8.9	99
15	A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus 15 Circulates in Humans and Companion Animals. MBio, 2014, 5, e00985-13.	4.1	95
16	Nextâ€generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Molecular Ecology Resources, 2011, 11, 650-661.	4.8	92
17	Are we underestimating the diversity and incidence of insect bacterial symbionts? A case study in ladybird beetles. Biology Letters, 2007, 3, 678-681.	2.3	83
18	Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of Haemophilus parasuis. Journal of Clinical Microbiology, 2015, 53, 3812-3821.	3.9	80

LUCY A WEINERT

#	Article	IF	CITATIONS
19	Molecular dating of human-to-bovid host jumps by <i>Staphylococcus aureus</i> reveals an association with the spread of domestication. Biology Letters, 2012, 8, 829-832.	2.3	77
20	The Evolutionary Genomics of Host Specificity in Staphylococcus aureus. Trends in Microbiology, 2020, 28, 465-477.	7.7	74
21	The Phylogeny of <i>Rickettsia</i> Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution?. Systematic Biology, 2016, 65, 265-279.	5.6	64
22	Why Might Bacterial Pathogens Have Small Genomes?. Trends in Ecology and Evolution, 2017, 32, 936-947.	8.7	59
23	Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014. Veterinary Microbiology, 2017, 207, 117-124.	1.9	53
24	Genome Reduction Is Associated with Bacterial Pathogenicity across Different Scales of Temporal and Ecological Divergence. Molecular Biology and Evolution, 2021, 38, 1570-1579.	8.9	50
25	Conjugation genes are common throughout the genus <i>Rickettsia</i> and are transmitted horizontally. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3619-3627.	2.6	37
26	Gene Content and Diversity of the Loci Encoding Biosynthesis of Capsular Polysaccharides of the 15 Serovar Reference Strains of Haemophilus parasuis. Journal of Bacteriology, 2013, 195, 4264-4273.	2.2	37
27	Effects of Environmental and Management-Associated Factors on Prevalence and Diversity of Streptococcus suis in Clinically Healthy Pig Herds in China and the United Kingdom. Applied and Environmental Microbiology, 2018, 84, .	3.1	37
28	Multiplex PCR Assay for Unequivocal Differentiation of Actinobacillus pleuropneumoniae Serovars 1 to 3, 5 to 8, 10, and 12. Journal of Clinical Microbiology, 2014, 52, 2380-2385.	3.9	36
29	The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics, 2014, 15, 1179.	2.8	34
30	Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Veterinary Microbiology, 2015, 178, 279-282.	1.9	34
31	Rates of Vaccine Evolution Show Strong Effects of Latency: Implications for Varicella Zoster Virus Epidemiology. Molecular Biology and Evolution, 2015, 32, 1020-1028.	8.9	32
32	Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution. Nucleic Acids Research, 2018, 46, 11466-11476.	14.5	31
33	Identification of <i>dfrA14</i> in two distinct plasmids conferring trimethoprim resistance in <i>Actinobacillus pleuropneumoniae</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 2217-2222.	3.0	30
34	Pathotyping the Zoonotic Pathogen Streptococcus suis: Novel Genetic Markers To Differentiate Invasive Disease-Associated Isolates from Non-Disease-Associated Isolates from England and Wales. Journal of Clinical Microbiology, 2019, 57, .	3.9	29
35	Understanding the emergence of bacterial pathogens in novel hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180328.	4.0	28
36	Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. ELife, 0, 11, .	6.0	28

LUCY A WEINERT

#	Article	IF	CITATIONS
37	Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Frontiers in Microbiology, 2015, 6, 1191.	3.5	27
38	Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biology, 2021, 19, 191.	3.8	26
39	"Pathotyping―Multiplex PCR Assay for Haemophilus parasuis: a Tool for Prediction of Virulence. Journal of Clinical Microbiology, 2017, 55, 2617-2628.	3.9	18
40	Inferring Host Range Dynamics from Comparative Data: The Protozoan Parasites of New World Monkeys. American Naturalist, 2014, 184, 65-74.	2.1	16
41	Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Reports, 2021, 36, 109614.	6.4	16
42	Use of Proteins Identified through a Functional Genomic Screen To Develop a Protein Subunit Vaccine That Provides Significant Protection against Virulent Streptococcus suis in Pigs. Infection and Immunity, 2018, 86, .	2.2	16
43	Generation of a Tn5 transposon library in Haemophilus parasuis and analysis by transposon-directed insertion-site sequencing (TraDIS). Veterinary Microbiology, 2013, 166, 558-566.	1.9	15
44	Comparative Analysis of Transcriptomes from Secondary Reproductives of Three Reticulitermes Termite Species. PLoS ONE, 2015, 10, e0145596.	2.5	14
45	Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant. Infection and Immunity, 2020, 88, .	2.2	7
46	Evaluation of the recombinant proteins RlpB and VacJ as a vaccine for protection against Glaesserella parasuis in pigs. BMC Veterinary Research, 2020, 16, 167.	1.9	5
47	Mutation rate dynamics reflect ecological change in an emerging zoonotic pathogen. PLoS Genetics, 2021, 17, e1009864.	3.5	5
48	Draft Genome Sequences of the Type Strains of Actinobacillus indolicus (46K2C) and Actinobacillus porcinus (NM319), Two NAD-Dependent Bacterial Species Found in the Respiratory Tract of Pigs. Microbiology Resource Announcements, 2020, 9, .	0.6	2