Ajay Kumar Jena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6835657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blackâ€Yellow Bandgap Tradeâ€Off During Thermal Stability Tests in Lowâ€Temperature Euâ€Doped CsPbl ₃ . Solar Rrl, 2022, 6, .	5.8	8
2	Outâ€ofâ€Glovebox Integration of Recyclable Europiumâ€Doped CsPbI ₃ in Tripleâ€Mesoscopic Carbonâ€Based Solar Cells Exceeding 9% Efficiency. Solar Rrl, 2022, 6, .	5.8	9
3	The high open-circuit voltage of perovskite solar cells: a review. Energy and Environmental Science, 2022, 15, 3171-3222.	30.8	181
4	Chlorophyll Derivative-Sensitized TiO ₂ Electron Transport Layer for Record Efficiency of Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 2207-2211.	13.7	154
5	Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?. Journal of Materials Research, 2021, 36, 1794-1804.	2.6	20
6	Optical behaviour of Î ³ -black CsPbl ₃ phases formed by quenching from 80 °C and 325 °C. JPhys Materials, 2021, 4, 034011.	4.2	6
7	Formation of CsPbI ₃ γâ€Phase at 80 °C by Europiumâ€Assisted Snowplow Effect. Advanced Energy and Sustainability Research, 2021, 2, 2100091.	5.8	8
8	Dopantâ€Free Polymer HTMâ€Based CsPbI ₂ Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Advanced Functional Materials, 2021, 31, 2103614.	14.9	60
9	Concerted Ion Migration and Diffusionâ€Induced Degradation in Leadâ€Free Ag ₃ Bil ₆ Rudorffite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100077.	5.8	28
10	Hybridization of SnO ₂ and an In-Situ-Oxidized Ti ₃ C ₂ T _{<i>x</i>} MXene Electron Transport Bilayer for High-Performance Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 13672-13680.	6.7	13
11	MAPbI3 Deposition by LV-PSE on TiO2 for Photovoltaic Application. Frontiers in Electronics, 2021, 2, .	3.2	1
12	Organic Dye/Cs ₂ AgBiBr ₆ Double Perovskite Heterojunction Solar Cells. Journal of the American Chemical Society, 2021, 143, 14877-14883.	13.7	74
13	Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti ₃ C ₂ T _x in air. Journal of Materials Chemistry A, 2021, 9, 5016-5025.	10.3	77
14	Benzodithiophene-thienopyrroledione-thienothiophene-based random copolymeric hole transporting material for perovskite solar cell. Chemical Engineering Journal, 2020, 382, 122830.	12.7	16
15	Perovskite Solar Cells: Can We Go Organicâ€Free, Leadâ€Free, and Dopantâ€Free?. Advanced Energy Materials, 2020, 10, 1902500.	19.5	198
16	Tetrahydrofuran as an Oxygen Donor Additive to Enhance Stability and Reproducibility of Perovskite Solar Cells Fabricated in High Relative Humidity (50%) Atmosphere. Energy Technology, 2020, 8, 1900990.	3.8	6
17	Improved Electrical and Structural Stability in HTL-Free Perovskite Solar Cells by Vacuum Curing Treatment. Energies, 2020, 13, 3953.	3.1	7
18	Lead(II) Propionate Additive and a Dopant-Free Polymer Hole Transport Material for CsPhi ₂ 8r Perovskite Solar Cells, ACS Energy Letters, 2020, 5, 1292-1299	17.4	81

Ajay Kumar Jena

#	Article	IF	CITATIONS
19	Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 33631-33637.	8.0	18
20	Photoactive Znâ€Chlorophyll Hole Transporterâ€Sensitized Leadâ€Free Cs ₂ AgBiBr ₆ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000166.	5.8	58
21	<i>V</i> _{OC} Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbl ₂ Br Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 9725-9734.	13.7	162
22	Full Efficiency Recovery in Hole-Transporting Layer-Free Perovskite Solar Cells With Free-Standing Dry-Carbon Top-Contacts. Frontiers in Chemistry, 2020, 8, 200.	3.6	8
23	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	14.9	125
24	Photomultiplying Visible Light Detection by Halide Perovskite Nanoparticles Hybridized with an Organo Eu Complex. Journal of Physical Chemistry Letters, 2019, 10, 5935-5942.	4.6	11
25	SnO ₂ –Ti ₃ C ₂ MXene electron transport layers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5635-5642.	10.3	173
26	Performance enhancement of AgBi ₂ I ₇ solar cells by modulating a solvent-mediated adduct and tuning remnant Bil ₃ in one-step crystallization. Chemical Communications, 2019, 55, 4031-4034.	4.1	54
27	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	47.7	2,009
28	Vapor Annealing Controlled Crystal Growth and Photovoltaic Performance of Bismuth Triiodide Embedded in Mesostructured Configurations. ACS Applied Materials & Interfaces, 2018, 10, 9547-9554.	8.0	45
29	Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A, 2018, 6, 2219-2230.	10.3	229
30	Stabilization of α-CsPbI ₃ in Ambient Room Temperature Conditions by Incorporating Eu into CsPbI ₃ . Chemistry of Materials, 2018, 30, 6668-6674.	6.7	199
31	Poly(4â€Vinylpyridine)â€Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells. ChemSusChem, 2017, 10, 2473-2479.	6.8	157
32	Severe Morphological Deformation of Spiro-OMeTAD in (CH ₃ NH ₃)PbI ₃ Solar Cells at High Temperature. ACS Energy Letters, 2017, 2, 1760-1761.	17.4	155
33	Hysteresis Characteristics and Device Stability. , 2016, , 255-284.		3
34	Revealing and reducing the possible recombination loss within TiO2 compact layer by incorporating MgO layer in perovskite solar cells. Solar Energy, 2016, 136, 379-384.	6.1	48
35	Steady state performance, photo-induced performance degradation and their relation to transient hysteresis in perovskite solar cells. Journal of Power Sources, 2016, 309, 1-10.	7.8	49
36	Determination of Chloride Content in Planar CH3NH3Pbl3â^' <i>x</i> Cl <i>x</i> Solar Cells by Chemical Analysis. Chemistry Letters, 2015, 44, 1089-1091.	1.3	33

Ajay Kumar Jena

#	Article	IF	CITATIONS
37	A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. Journal of Physical Chemistry Letters, 2015, 6, 1773-1779.	4.6	69
38	The Interface between FTO and the TiO ₂ Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9817-9823.	8.0	131
39	Isolated case of mucosal histoid Hansen's disease of the nasal cavity in a post-global elimination era. Journal of Infection and Public Health, 2015, 8, 630-633.	4.1	0
40	Fully crystalline perovskite-perylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss. APL Materials, 2014, 2, .	5.1	37
41	Examining Impact of Particle Deagglomeration Techniques on Microstructure and Properties of Oxide Materials Through Nanoindentation. Solid Mechanics and Its Applications, 2014, , 231-250.	0.2	Ο
42	Influence of Ethanol Amount During Washing on Deagglomeration of Coâ€Precipitated Calcined Nanocrystalline 3 <scp><scp>YSZ</scp> </scp> Powders. International Journal of Applied Ceramic Technology, 2013, 10, E247.	2.1	12
43	Effect of Sintering Profiles on Titania Interparticle Connectivity, Electron Transport and Interfacial Resistance in Dye-Sensitized Solar Cells. Materials Science Forum, 2013, 771, 143-157.	0.3	2
44	Effect of amount of dye in the TiO ₂ photoanode on electron transport, recombination, J _{sc} and V _{oc} of dye-sensitized solar cells. RSC Advances, 2013, 3, 2655-2661.	3.6	19
45	Analysis of light harvest in terms of current per mole of dye in dye-sensitized solar cells made with opaque and transparent photoanodes. Renewable Energy, 2013, 53, 265-270.	8.9	5
46	Plasma modified flexible bucky paper as an efficient counter electrode in dye sensitized solar cells. Energy and Environmental Science, 2012, 5, 7001.	30.8	42
47	Dye Sensitized Solar Cells: A Review. Transactions of the Indian Ceramic Society, 2012, 71, 1-16.	1.0	97
48	Sensitivity of mixed cation/halide perovskites to evaporation kinetics of DMSO at early stage. Journal of Materials Chemistry A, 0, , .	10.3	2
49	Why the gamma-phase of CsPbI3 can be formed at 80 C by adding Europium. , 0, , .		0
50	Black-Yellow Bandgap Trade-off during Thermal Stability Tests in Low-Temperature Eu-doped CsPbI3. , 0,		0