
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6835361/publications.pdf Version: 2024-02-01

MANUELA RASSO

#	Article	IF	CITATIONS
1	Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics, 2004, 4, 3943-3952.	2.2	246
2	Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes. Journal of Biological Chemistry, 2013, 288, 15699-15711.	3.4	216
3	Protein Nitration in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2005, 280, 16295-16304.	3.4	168
4	Extracellular Vesicles and a Novel Form of Communication in the Brain. Frontiers in Neuroscience, 2016, 10, 127.	2.8	144
5	Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Molecular Medicine, 2010, 2, 349-370.	6.9	124
6	Nitration of Hsp90 induces cell death. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1102-11.	7.1	122
7	Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant―metal chelators: From ferroptosis to stroke. Free Radical Biology and Medicine, 2013, 62, 26-36.	2.9	119
8	Mithramycin Is a Gene-Selective Sp1 Inhibitor That Identifies a Biological Intersection between Cancer and Neurodegeneration. Journal of Neuroscience, 2011, 31, 6858-6870.	3.6	114
9	Characterization of Detergent-Insoluble Proteins in ALS Indicates a Causal Link between Nitrative Stress and Aggregation in Pathogenesis. PLoS ONE, 2009, 4, e8130.	2.5	101
10	Development of Neh2-Luciferase Reporter and Its Application for High Throughput Screening and Real-Time Monitoring of Nrf2 Activators. Chemistry and Biology, 2011, 18, 752-765.	6.0	92
11	Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virusâ€resistant tomato. Proteomics, 2004, 4, 193-200.	2.2	90
12	Protein Arginine Methyltransferase 6 Enhances Polyglutamine-Expanded Androgen Receptor Function and Toxicity in Spinal and Bulbar Muscular Atrophy. Neuron, 2015, 85, 88-100.	8.1	89
13	A Selective Phenelzine Analogue Inhibitor of Histone Demethylase LSD1. ACS Chemical Biology, 2014, 9, 1284-1293.	3.4	88
14	Insoluble Mutant SOD1 Is Partly Oligoubiquitinated in Amyotrophic Lateral Sclerosis Mice. Journal of Biological Chemistry, 2006, 281, 33325-33335.	3.4	86
15	Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. Biochemical and Biophysical Research Communications, 2007, 353, 719-725.	2.1	72
16	Putting the â€~HAT' back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opinion on Investigational Drugs, 2009, 18, 573-584.	4.1	70
17	Utilization of an In Vivo Reporter for High Throughput Identification of Branched Small Molecule Regulators of Hypoxic Adaptation. Chemistry and Biology, 2010, 17, 380-391.	6.0	68
18	Transglutaminase Inhibition Protects against Oxidative Stress-Induced Neuronal Death Downstream of Pathological ERK Activation. Journal of Neuroscience, 2012, 32, 6561-6569.	3.6	62

#	Article	IF	CITATIONS
19	HIF Prolyl Hydroxylase Inhibitors Prevent Neuronal Death Induced by Mitochondrial Toxins: Therapeutic Implications for Huntington's Disease and Alzheimer's Disease. Antioxidants and Redox Signaling, 2010, 12, 435-443.	5.4	61
20	Role of Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2018, 12, 574.	2.8	47
21	Redox regulation of cyclophilin A by glutathionylation. Proteomics, 2006, 6, 817-825.	2.2	43
22	Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2017, 37, 1413-1427.	3.6	42
23	Cu,Zn-Superoxide Dismutase Increases Toxicity of Mutant and Zinc-deficient Superoxide Dismutase by Enhancing Protein Stability*. Journal of Biological Chemistry, 2010, 285, 33885-33897.	3.4	37
24	Mutations in TGM6 induce the unfolded protein response in SCA35. Human Molecular Genetics, 2017, 26, 3749-3762.	2.9	36
25	Nitroproteomics of Peripheral Blood Mononuclear Cells from Patients and a Rat Model of ALS. Antioxidants and Redox Signaling, 2009, 11, 1559-1567.	5.4	35
26	Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 485-495.	1.7	32
27	Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genetics in Medicine, 2020, 22, 1851-1862.	2.4	30
28	Transglutaminase is a Therapeutic Target for Oxidative Stress, Excitotoxicity and Stroke: A new Epigenetic Kid on the Cns Block. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 809-818.	4.3	28
29	Serine phosphorylation and arginine methylation at the crossroads to neurodegeneration. Experimental Neurology, 2015, 271, 77-83.	4.1	26
30	Hydroxamic Acid-Based Histone Deacetylase (HDAC) Inhibitors Can Mediate Neuroprotection Independent of HDAC Inhibition. Journal of Neuroscience, 2014, 34, 14328-14337.	3.6	25
31	Histone Deacetylase Inhibitors and Mithramycin A Impact a Similar Neuroprotective Pathway at a Crossroad between Cancer and Neurodegeneration. Pharmaceuticals, 2011, 4, 1183-1195.	3.8	21
32	Hydroxy-substituted trans -cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 378-389.	5.5	21
33	Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells, 2020, 9, 325.	4.1	21
34	Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Reports, 2021, 35, 108980.	6.4	20
35	Proteome analysis of mesencephalic tissues: evidence for Parkinson?s disease. Neurological Sciences, 2003, 24, 155-156.	1.9	19
36	NURR1 and ERR1 Modulate the Expression of Genes of a <i>DRD2</i> Coexpression Network Enriched for Schizophrenia Risk. Journal of Neuroscience, 2020, 40, 932-941.	3.6	19

#	Article	IF	CITATIONS
37	Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2021, 16, 52.	10.8	19
38	In Vitro and In Vivo Modeling of Spinal and Bulbar Muscular Atrophy. Journal of Molecular Neuroscience, 2016, 58, 365-373.	2.3	18
39	Antihelminthic Benzimidazoles Are Novel HIF Activators That Prevent Oxidative Neuronal Death via Binding to Tubulin. Antioxidants and Redox Signaling, 2015, 22, 121-134.	5.4	17
40	Altered ionic currents and amelioration by IGF-1 and PACAP in motoneuron-derived cells modelling SBMA. Biophysical Chemistry, 2017, 229, 68-76.	2.8	17
41	Gene expression and protein localization of calmodulin-dependent phosphodiesterase in adult rat retina. Journal of Neuroscience Research, 2006, 84, 1020-1026.	2.9	15
42	In vitro ischemia suppresses hypoxic induction of hypoxiaâ€inducible factorâ€1α by inhibition of synthesis and not enhanced degradation. Journal of Neuroscience Research, 2013, 91, 1066-1075.	2.9	15
43	Striatal Mutant Huntingtin Protein Levels Decline with Age in Homozygous Huntington's Disease Knock-In Mouse Models. Journal of Huntington's Disease, 2018, 7, 137-150.	1.9	14
44	Designing Dual Transglutaminaseâ€2/Histone Deacetylase Inhibitors Effective at Halting Neuronal Death. ChemMedChem, 2018, 13, 227-230.	3.2	13
45	CIC-2-like Chloride Current Alterations in a Cell Model of Spinal and Bulbar Muscular Atrophy, a Polyglutamine Disease. Journal of Molecular Neuroscience, 2021, 71, 662-674.	2.3	13
46	Defective cyclophilin A induces TDP-43 proteinopathy: implications for amyotrophic lateral sclerosis and frontotemporal dementia. Brain, 2021, 144, 3710-3726.	7.6	13
47	Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1–42-mediated toxicity. Neurobiology of Disease, 2020, 140, 104849.	4.4	10
48	Neither a Novel Tau Proteinopathy nor an Expansion of a Phenotype: Reappraising Clinicopathology-Based Nosology. International Journal of Molecular Sciences, 2021, 22, 7292.	4.1	7
49	Rapid Nickel-based Isolation of Extracellular Vesicles from Different Biological Fluids. Bio-protocol, 2020, 10, e3512.	0.4	7
50	Gene expression and protein localization of calmodulinâ€dependent phosphodiesterase during ontogenesis of chick retina. Journal of Neuroscience Research, 2008, 86, 1017-1023.	2.9	6
51	Transglutaminases, neuronal cell death and neural repair: implications for traumatic brain injury and therapeutics. Current Opinion in Neurology, 2019, 32, 796-801.	3.6	6
52	Motor Neuron Diseases and Neuroprotective Peptides: A Closer Look to Neurons. Frontiers in Aging Neuroscience, 2021, 13, 723871.	3.4	5
53	Looking Above but Not Beyond the Genome for Therapeutics in Neurology and Psychiatry: Epigenetic Proteins and RNAs Find a New Focus. Neurotherapeutics, 2013, 10, 551-555.	4.4	3
54	A case report of late-onset cerebellar ataxia associated with a rare p.R342W TGM6 (SCA35) mutation. BMC Neurology, 2020, 20, 408.	1.8	3

#	Article	IF	CITATIONS
55	Huntingtin-Mediated Axonal Transport Requires Arginine Methylation by PRMT6. SSRN Electronic Journal, O, , .	0.4	2
56	Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells, 2022, 11, 2105.	4.1	2
57	Targeting Transcriptional Dysregulation in Huntington's Disease: Description of Therapeutic Approaches. , 2012, , .		1
58	Correction: Sleiman et al., Hydroxamic Acid-Based Histone Deacetylase (HDAC) Inhibitors Can Mediate Neuroprotection Independent of HDAC Inhibition. Journal of Neuroscience, 2015, 35, 438-438.	3.6	0
59	T197. A DRD2 CO-EXPRESSION GENE SET ENRICHED FOR SCHIZOPHRENIA RISK GENES IS CHARACTERIZED BY A COMMON TRANSCRIPTIONAL REGULATION INVOLVING NURR1 TRANSCRIPTION FACTOR. Schizophrenia Bulletin, 2018, 44, S193-S193.	4.3	0
60	A14â€Arginine methylation of huntingtin is a novel post-translational modification that impacts huntington's disease pathogenesis. , 2018, , .		0