
Reka M Winslow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6834439/publications.pdf Version: 2024-02-01

REKA M WINSLOW

#	Article	IF	CITATIONS
1	Causes and Consequences of Magnetic Complexity Changes within Interplanetary Coronal Mass Ejections: A Statistical Study. Astrophysical Journal, 2022, 927, 102.	4.5	16
2	Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury. Space Science Reviews, 2022, 218, 1.	8.1	19
3	Interstellar Neutral He Parameters from Crossing Parameter Tubes with the Interstellar Mapping and Acceleration Probe Informed by 10 yr of Interstellar Boundary Explorer Observations. Astrophysical Journal, Supplement Series, 2022, 258, 7.	7.7	12
4	A Coronal Mass Ejection and Magnetic Ejecta Observed In Situ by STEREO-A and Wind at 55° Angular Separation. Astrophysical Journal, 2022, 929, 149.	4.5	11
5	Multi-spacecraft Observations of the Evolution of Interplanetary Coronal Mass Ejections between 0.3 and 2.2 au: Conjunctions with the Juno Spacecraft. Astrophysical Journal, 2022, 933, 127.	4.5	9
6	Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft. Astrophysical Journal Letters, 2021, 916, L15.	8.3	14
7	The Effect of Stream Interaction Regions on ICME Structures Observed in Longitudinal Conjunction. Astrophysical Journal, 2021, 916, 40.	4.5	22
8	First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A. Astrophysical Journal, 2021, 916, 94.	4.5	23
9	Categorization of Coronal Mass Ejection-driven Sheath Regions: Characteristics of STEREO Events. Astrophysical Journal, 2021, 921, 57.	4.5	8
10	A Catalog of Interplanetary Coronal Mass Ejections Observed by Juno between 1 and 5.4 au. Astrophysical Journal, 2021, 923, 136.	4.5	8
11	The Shape of Mercury's Magnetopause: The Picture From MESSENGER Magnetometer Observations and Future Prospects for BepiColombo. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027544.	2.4	20
12	Observations of Extreme ICME Ram Pressure Compressing Mercury's Dayside Magnetosphere to the Surface. Astrophysical Journal, 2020, 889, 184.	4.5	22
13	Radial Evolution of Coronal Mass Ejections Between MESSENGER, <i>Venus Express</i> , STEREO, and L1: Catalog and Analysis. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027084.	2.4	45
14	Evolution of a Longâ€Duration Coronal Mass Ejection and Its Sheath Region Between Mercury and Earth on 9–14 July 2013. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027213.	2.4	25
15	Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 33.	7.7	21
16	A Survey of Interplanetary Small Flux Ropes at Mercury. Astrophysical Journal, 2020, 894, 120.	4.5	13
17	Inconsistencies Between Local and Global Measures of CME Radial Expansion as Revealed by Spacecraft Conjunctions. Astrophysical Journal, 2020, 899, 119.	4.5	24
18	Properties of the Sheath Regions of Coronal Mass Ejections with or without Shocks from STEREO in situ Observations near 1 au. Astrophysical Journal, 2020, 904, 177.	4.5	13

REKA M WINSLOW

#	Article	IF	CITATIONS
19	Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses. Journal of Geophysical Research: Space Physics, 2019, 124, 812-836.	2.4	62
20	Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deepâ€6pace Exploration. Space Weather, 2018, 16, 289-303.	3.7	44
21	Opening a Window on ICME-driven GCR Modulation in the Inner Solar System. Astrophysical Journal, 2018, 856, 139.	4.5	27
22	Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE. Space Weather, 2018, 16, 216-229.	3.7	45
23	Forecasting Periods of Strong Southward Magnetic Field Following Interplanetary Shocks. Space Weather, 2018, 16, 2004-2021.	3.7	11
24	On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 au. Astrophysical Journal Letters, 2018, 864, L7.	8.3	47
25	Statistical study of ICME effects on Mercury's magnetospheric boundaries and northern cusp region from MESSENGER. Journal of Geophysical Research: Space Physics, 2017, 122, 4960-4975.	2.4	24
26	Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks. Astrophysical Journal, 2017, 848, 75.	4.5	29
27	Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 2017, 15, 955-970.	3.7	65
28	MESSENGER observations of induced magnetic fields in Mercury's core. Geophysical Research Letters, 2016, 43, 2436-2444.	4.0	51
29	Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions. Journal of Geophysical Research: Space Physics, 2016, 121, 6092-6106.	2.4	58
30	Factors affecting the geoeffectiveness of shocks and sheaths at 1ÂAU. Journal of Geophysical Research: Space Physics, 2016, 121, 10861-10879.	2.4	63
31	Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind. Nature Communications, 2016, 7, 13001.	12.8	22
32	Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSAâ€ENLIL model with the Cone extension. Journal of Geophysical Research: Space Physics, 2015, 120, 5667-5685.	2.4	16
33	Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. Journal of Geophysical Research: Space Physics, 2015, 120, 6101-6118.	2.4	88
34	Mercury's surface magnetic field determined from protonâ€reflection magnetometry. Geophysical Research Letters, 2014, 41, 4463-4470.	4.0	39
35	MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 2014, 119, 8087-8116.	2.4	125
36	Solar wind forcing at Mercury: WSAâ€ENLIL model results. Journal of Geophysical Research: Space Physics, 2013, 118, 45-57.	2.4	46

REKA M WINSLOW

#	Article	IF	CITATIONS
37	Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2213-2227.	2.4	182
38	MESSENGER observations of a fluxâ€ŧransferâ€event shower at Mercury. Journal of Geophysical Research, 2012, 117, .	3.3	85
39	Observations of Mercury's northern cusp region with MESSENCER's Magnetometer. Geophysical Research Letters, 2012, 39, .	4.0	86
40	Lowâ€degree structure in Mercury's planetary magnetic field. Journal of Geophysical Research, 2012, 117,	3.3	131
41	MESSENGER observations of Mercury's magnetic field structure. Journal of Geophysical Research, 2012, 117, .	3.3	109
42	The Global Magnetic Field of Mercury from MESSENGER Orbital Observations. Science, 2011, 333, 1859-1862.	12.6	301