
Thomas Proft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6833761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complement evasion factor (CEF), a novel immune evasion factor of <i>Streptococcus pyogenes</i> . Virulence, 2022, 13, 225-240.	4.4	7
2	Pilus proteins from <i>Streptococcus pyogenes</i> stimulate innate immune responses through Tollâ€like receptor 2. Immunology and Cell Biology, 2022, 100, 174-185.	2.3	3
3	PilVax: A Novel Platform for the Development of Mucosal Vaccines. Methods in Molecular Biology, 2022, 2412, 399-410.	0.9	0
4	Functional Characterisation of Two Novel Deacetylases from Streptococcus pyogenes. Microbiology Research, 2022, 13, 323-331.	1.9	1
5	A multivalent T-antigen-based vaccine for Group A Streptococcus. Scientific Reports, 2021, 11, 4353.	3.3	20
6	Intranasal immunization with Ag85B peptide 25 displayed on <i>Lactococcuslactis</i> using the PilVax platform induces antigenâ€specific B―and Tâ€cell responses. Immunology and Cell Biology, 2021, 99, 767-781.	2.3	6
7	Preformulation studies of thymopentin: analytical method development, physicochemical properties, kinetic degradation investigations and formulation perspective. Drug Development and Industrial Pharmacy, 2021, 47, 1680-1692.	2.0	6
8	Streptococcus pyogenes nuclease A (SpnA) mediated virulence does not exclusively depend on nuclease activity. Journal of Microbiology, Immunology and Infection, 2020, 53, 42-48.	3.1	11
9	Cell wallâ€anchored 5′â€nucleotidases in Gramâ€positive cocci. Molecular Microbiology, 2020, 113, 691-698.	2.5	12
10	Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms, 2020, 8, 1361.	3.6	10
11	Development and Evaluation of a New Triplex Immunoassay That Detects Group A <i>Streptococcus</i> Antibodies for the Diagnosis of Rheumatic Fever. Journal of Clinical Microbiology, 2020, 58, .	3.9	10
12	The Use of Galleria mellonella (Wax Moth) as an Infection Model for Group A Streptococcus. Methods in Molecular Biology, 2020, 2136, 279-286.	0.9	11
13	A Mouse Nasopharyngeal Colonization Model for Group A Streptococcus. Methods in Molecular Biology, 2020, 2136, 303-308.	0.9	1
14	Assays to Analyze Adhesion of Group A Streptococcus to Host Cells. Methods in Molecular Biology, 2020, 2136, 271-278.	0.9	2
15	Generation of Bioluminescent Group A Streptococcus for Biophotonic Imaging. Methods in Molecular Biology, 2020, 2136, 71-77.	0.9	1
16	Using Lactococcus lactis as Surrogate Organism to Study Group A Streptococcus Surface Proteins. Methods in Molecular Biology, 2020, 2136, 155-162.	0.9	1
17	Impact of Superantigen-Producing Bacteria on T Cells from Tonsillar Hyperplasia. Pathogens, 2019, 8, 90.	2.8	9
18	Group A <i>Streptococcus</i> T Antigens Have a Highly Conserved Structure Concealed under a Heterogeneous Surface That Has Implications for Vaccine Design. Infection and Immunity, 2019, 87, .	2.2	14

#	Article	IF	CITATIONS
19	Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5′-nucleotidase A (S5nA) found in Streptococcus iniae. Journal of Biochemistry, 2018, 164, 165-171.	1.7	5
20	PilVax – a novel peptide delivery platform for the development of mucosal vaccines. Scientific Reports, 2018, 8, 2555.	3.3	17
21	The novel Group A Streptococcus antigen SpnA combined with bead-based immunoassay technology improves streptococcal serology for the diagnosis of acute rheumatic fever. Journal of Infection, 2018, 76, 361-368.	3.3	11
22	Protein adhesins as vaccine antigens for Group A Streptococcus. Pathogens and Disease, 2018, 76, .	2.0	24
23	Development of a high-throughput opsonophagocytic assay for the determination of functional antibody activity against Streptococcus pyogenes using bioluminescence. Journal of Microbiological Methods, 2017, 134, 58-61.	1.6	3
24	A potential role for staphylococcal and streptococcal superantigens in driving skewing of TCR Vβ subsets in tonsillar hyperplasia. Medical Microbiology and Immunology, 2017, 206, 337-346.	4.8	9
25	The ability of Group A streptococcus to adhere to immortalized human skin versus throat cell lines does not reflect their predicted tissue tropism. Clinical Microbiology and Infection, 2017, 23, 677.e1-677.e3.	6.0	6
26	Mucosal vaccination with pili from Group A Streptococcus expressed on Lactococcus lactis generates protective immune responses. Scientific Reports, 2017, 7, 7174.	3.3	32
27	The Group A Streptococcus serotype <scp>M</scp> 2 pilus plays a role in host cell adhesion and immune evasion. Molecular Microbiology, 2017, 103, 282-298.	2.5	28
28	Artificial Urine for Teaching Urinalysis Concepts and Diagnosis of Urinary Tract Infection in the Medical Microbiology Laboratory. Journal of Microbiology and Biology Education, 2017, 18, .	1.0	13
29	Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever. Frontiers in Microbiology, 2016, 7, 1119.	3.5	26
30	<i>Galleria mellonella</i> infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 2016, 7, 214-229.	4.4	534
31	Stabilized plasmid-based system for bioluminescent labeling of multiple streptococcal species. Biotechnology Letters, 2016, 38, 139-143.	2.2	2
32	Bacterial superantigens and superantigen-like toxins. , 2015, , 911-974.		3
33	Streptococcal 5′-Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates Immune Evasion. Journal of Biological Chemistry, 2015, 290, 31126-31137.	3.4	33
34	Increasing incidence of invasive group A streptococcus disease in New Zealand, 2002–2012: A national population-based study. Journal of Infection, 2015, 70, 127-134.	3.3	31
35	Vaccination with Streptococcus pyogenes nuclease A stimulates a high antibody response but no protective immunity in a mouse model of infection. Medical Microbiology and Immunology, 2015, 204, 185-191.	4.8	5
36	M-Protein Analysis of Streptococcus pyogenes Isolates Associated with Acute Rheumatic Fever in New Zealand. Journal of Clinical Microbiology, 2015, 53, 3618-3620.	3.9	43

#	Article	IF	CITATIONS
37	Structure and Activity of Streptococcus pyogenes SipA: A Signal Peptidase-Like Protein Essential for Pilus Polymerisation. PLoS ONE, 2014, 9, e99135.	2.5	14
38	Survey of the bp/tee genes from clinical group A streptococcus isolates in New Zealand – implications for vaccine development. Journal of Medical Microbiology, 2014, 63, 1670-1678.	1.8	24
39	Streptococcal superantigens: categorization and clinical associations. Trends in Molecular Medicine, 2014, 20, 48-62.	6.7	97
40	Comparison of firefly luciferase and NanoLuc luciferase for biophotonic labeling of group A Streptococcus. Biotechnology Letters, 2014, 36, 829-834.	2.2	25
41	Structural Conservation, Variability, and Immunogenicity of the T6 Backbone Pilin of Serotype M6 Streptococcus pyogenes. Infection and Immunity, 2014, 82, 2949-2957.	2.2	32
42	Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine, 2014, 32, 3713-3720.	3.8	44
43	Toxin–antitoxin-stabilized reporter plasmids for biophotonic imaging of Group A streptococcus. Applied Microbiology and Biotechnology, 2013, 97, 9737-9745.	3.6	29
44	<i>Galleria mellonella</i> larvae as an infection model for group A streptococcus. Virulence, 2013, 4, 419-428.	4.4	154
45	Crystal Structure of Spy0129, a Streptococcus pyogenes Class B Sortase Involved in Pilus Assembly. PLoS ONE, 2011, 6, e15969.	2.5	44
46	Functional analysis of <i>Streptococcus pyogenes</i> nuclease A (SpnA), a novel group A streptococcal virulence factor. Molecular Microbiology, 2011, 79, 1629-1642.	2.5	70
47	Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnology Letters, 2010, 32, 1-10.	2.2	110
48	The use of sortase-mediated ligation for the immobilisation of bacterial adhesins onto fluorescence-labelled microspheres: a novel approach to analyse bacterial adhesion to host cells. Biotechnology Letters, 2010, 32, 1713-1718.	2.2	16
49	Purification, crystallization and preliminary crystallographic analysis of the minor pilin FctB fromStreptococcus pyogenes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 177-179.	0.7	3
50	Crystal Structure of the Minor Pilin FctB Reveals Determinants of Group A Streptococcal Pilus Anchoring. Journal of Biological Chemistry, 2010, 285, 20381-20389.	3.4	61
51	Incorporation of the basal pilin FctB into the pilus ofStreptococcus pyogenes. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s33-s34.	0.3	0
52	The Laminin-Binding Protein Lbp from Streptococcus pyogenes Is a Zinc Receptor. Journal of Bacteriology, 2009, 191, 5814-5823.	2.2	56
53	lsopeptide bonds in bacterial pili and their characterization by Xâ€ray crystallography and mass spectrometry. Biopolymers, 2009, 91, 1126-1134.	2.4	22
54	Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease. Cellular and Molecular Life Sciences, 2009, 66, 613-635.	5.4	425

#	Article	IF	CITATIONS
55	Surface Proteins of Gram-Positive Pathogens: Using Crystallography to Uncover Novel Features in Drug and Vaccine Candidates. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 1-9.	0.5	0
56	Immobilization of proteins to biacore sensor chips using Staphylococcus aureus sortase A. Biotechnology Letters, 2008, 30, 1603-1607.	2.2	63
57	Purification, crystallization and preliminary crystallographic analysis of <i>Streptococcus pyogenes</i> laminin-binding protein Lbp. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 141-143.	0.7	4
58	The bacterial superantigen and superantigenâ€ŀike proteins. Immunological Reviews, 2008, 225, 226-243.	6.0	415
59	Isopeptide bonds stabilize Gram-positive bacterial pilus structure and assembly. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C376-C377.	0.3	0
60	Crystal structure of the laminin-binding protein Lpb ofStreptococcus pyogenes. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C639-C639.	0.3	0
61	Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure. Science, 2007, 318, 1625-1628.	12.6	295
62	Streptococcal Superantigens. , 2007, 93, 1-23.		33
63	The Cytokine Response to Streptococcal Superantigens Varies Between Individual Toxins and Between Individuals: Implications for the Pathogenesis of Group A Streptococcal Diseases. Journal of Interferon and Cytokine Research, 2007, 27, 553-558.	1.2	5
64	Involvement of streptococcal superantigens in streptococcal toxic shock syndrome. International Congress Series, 2006, 1289, 125-128.	0.2	0
65	Variations in the protective immune response against streptococcal superantigens in populations of different ethnicity. Medical Microbiology and Immunology, 2006, 195, 37-43.	4.8	11
66	Streptococcal Mitogenic Exotoxin, SmeZ, Is the Most Susceptible M1T1 Streptococcal Superantigen to Degradation by the Streptococcal Cysteine Protease, SpeB. Journal of Biological Chemistry, 2006, 281, 35281-35288.	3.4	27
67	Different Preparations of Intravenous Immunoglobulin Vary in Their Efficacy to Neutralize Streptococcal Superantigens: Implications for Treatment of Streptococcal Toxic Shock Syndrome. Clinical Infectious Diseases, 2006, 43, 743-746.	5.8	58
68	Streptococcal superantigenic toxins. , 2006, , 844-861.		0
69	The Staphylococcal Superantigen-Like Protein 7 Binds IgA and Complement C5 and Inhibits IgA-FcαRI Binding and Serum Killing of Bacteria. Journal of Immunology, 2005, 174, 2926-2933.	0.8	237
70	Involvement of Streptococcal Mitogenic Exotoxin Z in Streptococcal Toxic Shock Syndrome. Journal of Clinical Microbiology, 2005, 43, 3570-3573.	3.9	15
71	Structural studies on novel streptococcal virulence factors. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c193-c194.	0.3	0
72	Crystallographic and Mutational Data Show That the Streptococcal Pyrogenic Exotoxin J Can Use a Common Binding Surface for T-cell Receptor Binding and Dimerization. Journal of Biological Chemistry, 2004, 279, 38571-38576.	3.4	18

#	Article	IF	CITATIONS
73	Bacterial superantigens. Clinical and Experimental Immunology, 2003, 133, 299-306.	2.6	371
74	Two Novel Superantigens Found in Both Group A and Group C Streptococcus. Infection and Immunity, 2003, 71, 1361-1369.	2.2	95
75	Superantigens and Streptococcal Toxic Shock Syndrome. Emerging Infectious Diseases, 2003, 9, 1211-1218.	4.3	82
76	The Bacterial Superantigen Streptococcal Mitogenic Exotoxin Z Is the Major Immunoactive Agent of <i>Streptococcus pyogenes</i> . Journal of Immunology, 2002, 169, 2561-2569.	0.8	84
77	The Three-dimensional Structure of a Superantigen-like Protein, SET3, from a Pathogenicity Island of the Staphylococcus aureus Genome. Journal of Biological Chemistry, 2002, 277, 32274-32281.	3.4	77
78	Immunological and Biochemical Characterization of Streptococcal Pyrogenic Exotoxins I and J (SPE-I) Tj ETQq0) 0 0 rgBT /C	overlock 10 Tf
79	Pyrogenicity and Cytokine-Inducing Properties ofStreptococcus pyogenes Superantigens: Comparative Study of Streptococcal Mitogenic Exotoxin Z and Pyrogenic Exotoxin A. Infection and Immunity, 2001, 69, 4141-4145.	2.2	27
80	Induction of interleukinâ€8 in human neutrophils after MHC class II crossâ€linking with superantigens. Journal of Leukocyte Biology, 2001, 70, 80-86.	3.3	22
81	Superantigens – powerful modifiers of the immune system. Trends in Molecular Medicine, 2000, 6, 125-132.	2.6	147
82	The Streptococcal Superantigen Smez Exhibits Wide Allelic Variation, Mosaic Structure, and Significant Antigenic Variation. Journal of Experimental Medicine, 2000, 191, 1765-1776.	8.5	78
83	Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 299, 157-168.	4.2	69
84	Superantigens in human disease. Journal of Clinical Immunology, 1999, 19, 149-157.	3.8	43
85	Identification and Characterization of Novel Superantigens from Streptococcus pyogenes. Journal of Experimental Medicine, 1999, 189, 89-102.	8.5	184
86	Superantigens: Just Like Peptides Only Different. Journal of Experimental Medicine, 1998, 187, 819-821.	8.5	39
87	Transposon mutagenesis reinforces the correlation between Mycoplasma pneumoniae cytoskeletal protein HMW2 and cytadherence. Journal of Bacteriology, 1997, 179, 2668-2677.	2.2	82
88	The P200 protein of Mycoplasma pneumoniae shows common features with the cytadherence-associated proteins HMW1 and HMW3. Gene, 1996, 171, 79-82.	2.2	39
89	Sequence analysis and characterization of the hmw gene cluster of Mycoplasma pneumoniae. Gene, 1996, 171, 19-25.	2.2	35
90	The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. Journal of Bacteriology, 1995, 177, 3370-3378.	2.2	74

0

#	Article	IF	CITATIONS
91	Identification and characterization of hitherto unknownMycoplasma pneumoniaeproteins. Molecular Microbiology, 1994, 13, 337-348.	2.5	64

92 The Streptococcal Superantigens. , 0, , 1-20.