
## Neife Aparecida G Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6832832/publications.pdf

Version: 2024-02-01



## NEIFE APARECIDA G DOS

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Baccharin from Brazilian green propolis induces neurotrophic signaling pathways in PC12 cells:<br>potential for axonal and synaptic regeneration. Naunyn-Schmiedeberg's Archives of Pharmacology,<br>2022, 395, 659.                                                | 3.0 | 1         |
| 2  | The Neurotrophic-Like Effect of Carvacrol: Perspective for Axonal and Synaptic Regeneration.<br>Neurotoxicity Research, 2021, 39, 886-896.                                                                                                                          | 2.7 | 6         |
| 3  | The antibiotic doxycycline mimics the NGF signaling in PC12Âcells: A relevant mechanism for neuroprotection. Chemico-Biological Interactions, 2021, 341, 109454.                                                                                                    | 4.0 | 7         |
| 4  | A Synthetic Snake-Venom-Based Tripeptide Protects PC12 Cells from the Neurotoxicity of Acrolein by Improving Axonal Plasticity and Bioenergetics. Neurotoxicity Research, 2020, 37, 227-237.                                                                        | 2.7 | 9         |
| 5  | Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food and Chemical Toxicology, 2020, 136, 111079.                                                                                                                            | 3.6 | 100       |
| 6  | Dual effects of S-adenosyl-methyonine on PC12 cells exposed to the dopaminergic neurotoxin MPP+.<br>Journal of Pharmacy and Pharmacology, 2020, 72, 1427-1435.                                                                                                      | 2.4 | 2         |
| 7  | The Antidiabetic Drug Liraglutide Minimizes the Non-Cholinergic Neurotoxicity of the Pesticide<br>Mipafox in SH-SY5Y Cells. Neurotoxicity Research, 2019, 35, 150-159.                                                                                              | 2.7 | 4         |
| 8  | Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells Against Cisplatin-Induced Neurotoxicity by<br>Activating the AMPK/SIRT1, MAPK/Erk, and PI3k/Akt Signaling Pathways. Neurotoxicity Research, 2019, 36,<br>175-192.                                           | 2.7 | 25        |
| 9  | A synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MPP + toxicity by activating the NGF-signaling pathway. Peptides, 2018, 104, 24-34.                                                                                                 | 2.4 | 17        |
| 10 | Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells from Cisplatin-Induced Neurotoxicity by Activating the NGF-Signaling Pathway. Neurotoxicity Research, 2018, 34, 32-46.                                                                                      | 2.7 | 26        |
| 11 | High concentration of trichlorfon (1 mM) disrupts axonal cytoskeleton and decreases the expression of plasticity-related proteins in SH-SY5Y cells. Toxicology in Vitro, 2017, 39, 84-92.                                                                           | 2.4 | 10        |
| 12 | L- and T-type calcium channel blockers protect against the inhibitory effects of mipafox on neurite<br>outgrowth and plasticity-related proteins in SH-SY5Y cells. Journal of Toxicology and Environmental<br>Health - Part A: Current Issues, 2017, 80, 1086-1097. | 2.3 | 8         |
| 13 | The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism. Chemico-Biological Interactions, 2017, 261, 86-95.                                                                                   | 4.0 | 23        |
| 14 | Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite<br>Outgrowth Without Affecting the Expression of NGF in PC12 Cells. Neurochemical Research, 2016, 41,<br>2993-3003.                                                 | 3.3 | 9         |
| 15 | Carvedilol protects the kidneys of tumor-bearing mice without impairing the biodistribution or the genotoxicity of cisplatin. Chemico-Biological Interactions, 2016, 245, 59-65.                                                                                    | 4.0 | 7         |
| 16 | The neuroprotection of cannabidiol against MPP + -induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease. Toxicology in Vitro, 2015, 30, 231-240.       | 2.4 | 75        |
| 17 | In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate. Toxicology in Vitro, 2015, 29, 522-528.                                                                                                                     | 2.4 | 38        |
| 18 | Effect of diabetes on biodistribution, nephrotoxicity and antitumor activity of cisplatin in mice.<br>Chemico-Biological Interactions, 2015, 229, 119-131.                                                                                                          | 4.0 | 19        |

## NEIFE APARECIDA G DOS

| #  | Article                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: Comparison with mipafox and paraoxon. Toxicology in Vitro, 2015, 29, 1079-1087.                                                                                                            | 2.4 | 12        |
| 20 | A tripeptide isolated from Bothrops atrox venom has neuroprotective and neurotrophic effects on a cellular model of Parkinson's disease. Chemico-Biological Interactions, 2015, 235, 10-16.                                                                                                         | 4.0 | 16        |
| 21 | Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins. NeuroToxicology, 2014, 45, 131-138.                                                                                                                               | 3.0 | 33        |
| 22 | Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats. Neuroscience, 2013, 233, 86-94.                                                                                                                                                  | 2.3 | 69        |
| 23 | Carvedilol efficiently protects kidneys without affecting the antitumor efficacy of cisplatin in mice.<br>Chemico-Biological Interactions, 2013, 206, 90-99.                                                                                                                                        | 4.0 | 14        |
| 24 | Carvedilol Protects Against Apoptotic Cell Death Induced by Cisplatin in Renal Tubular Epithelial<br>Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 981-990.                                                                                             | 2.3 | 19        |
| 25 | Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Archives of Toxicology, 2012, 86, 1233-1250.                                                                                                                                                                           | 4.2 | 298       |
| 26 | Enantioselective analysis of unbound tramadol, O-desmethyltramadol and N-desmethyltramadol in<br>plasma by ultrafiltration and LC–MS/MS: Application to clinical pharmacokinetics. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 880, 140-147. | 2.3 | 32        |
| 27 | Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chemico-Biological Interactions, 2011, 189, 45-51.                                                                                                                  | 4.0 | 54        |
| 28 | Low-molecular-mass peptides from the venom of the Amazonian viper Bothrops atrox protect against brain mitochondrial swelling in rat: Potential for neuroprotection. Toxicon, 2010, 56, 86-92.                                                                                                      | 1.6 | 15        |
| 29 | Carvedilol protects against the renal mitochondrial toxicity induced by cisplatin in rats.<br>Mitochondrion, 2010, 10, 46-53.                                                                                                                                                                       | 3.4 | 38        |
| 30 | Effects of zinc phthalocyanine tetrasulfonate-based photodynamic therapy on rat brain isolated mitochondria. Chemico-Biological Interactions, 2009, 179, 402-406.                                                                                                                                   | 4.0 | 27        |
| 31 | Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment,<br>membrane rigidification and apoptosis in rat liver. Journal of Applied Toxicology, 2008, 28, 337-344.                                                                                           | 2.8 | 169       |
| 32 | Aromatic antiepileptic drugs and mitochondrial toxicity: Effects on mitochondria isolated from rat<br>liver. Toxicology in Vitro, 2008, 22, 1143-1152.                                                                                                                                              | 2.4 | 48        |
| 33 | Involvement of oxidative stress in the hepatotoxicity induced by aromatic antiepileptic drugs.<br>Toxicology in Vitro, 2008, 22, 1820-1824.                                                                                                                                                         | 2.4 | 48        |
| 34 | Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats. Chemico-Biological Interactions, 2007, 170, 177-186.                                                                                                                                        | 4.0 | 47        |
| 35 | Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance,<br>impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Archives of Toxicology,<br>2007, 81, 495-504.                                                                          | 4.2 | 264       |
| 36 | Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative<br>stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney<br>mitochondria. Cancer Chemotherapy and Pharmacology, 2007, 61, 145-155.                          | 2.3 | 140       |

## NEIFE APARECIDA G DOS

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Quantitative assay of lorazepam and its metabolite glucuronide by reverse-phase liquid<br>chromatography-tandem mass spectrometry in human plasma and urine samples. Journal of<br>Pharmaceutical and Biomedical Analysis, 2006, 40, 389-396.                                   | 2.8 | 18        |
| 38 | A highly sensitive LC–MS–MS assay for analysis of midazolam and its major metabolite in human<br>plasma: Applications to drug metabolism. Journal of Chromatography B: Analytical Technologies in the<br>Biomedical and Life Sciences, 2005, 822, 27-32.                        | 2.3 | 40        |
| 39 | Herbicide Leaching on a Recharge Area of the Guarany Aquifer in Brazil. Journal of Environmental<br>Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2005, 40, 159-165.                                                                      | 1.5 | 16        |
| 40 | Lixiviação de atrazina em solo em área de recarga do AquÃfero Guarani. Revista Brasileira De<br>Herbicidas, 2005, 4, 92.                                                                                                                                                        | 0.1 | 3         |
| 41 | Atrazine in Water and Biodegradation in a Recharge Area of Guarany Aquifer in Brazil. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 117-124.                                                                                                                | 2.7 | 4         |
| 42 | Enantioselective determination of lercanidipine in human plasma for pharmacokinetic studies by<br>normal-phase liquid chromatography–tandem mass spectrometry. Journal of Chromatography B:<br>Analytical Technologies in the Biomedical and Life Sciences, 2003, 796, 429-437. | 2.3 | 39        |
| 43 | Dynamic and kinetic disposition of nisoldipine enantiomers in hypertensive patients presenting with type-2 diabetes mellitus. European Journal of Clinical Pharmacology, 2002, 58, 607-614.                                                                                     | 1.9 | 42        |
| 44 | Enantioselective assay of nisoldipine in human plasma by chiral high-performance liquid<br>chromatography combined with gas chromatographicâ´´mass spectrometry: applications to<br>pharmacokinetics. Biomedical Applications, 2001, 762, 87-95.                                | 1.7 | 25        |
| 45 | Title is missing!. Water, Air, and Soil Pollution, 2000, 118, 329-338.                                                                                                                                                                                                          | 2.4 | 33        |
| 46 | Hg(II)-induced renal cytotoxicity: in vitro and in vivo implications for the bioenergetic and oxidative status of mitochondria. Molecular and Cellular Biochemistry, 1997, 177, 53-59.                                                                                          | 3.1 | 28        |
| 47 | Occupational exposure to lead, kidney function tests, and blood pressure. American Journal of Industrial Medicine, 1994, 26, 635-643.                                                                                                                                           | 2.1 | 52        |