Elissa Deenick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6831614/publications.pdf

Version: 2024-02-01

66234 95083 7,833 69 42 68 citations h-index g-index papers 71 71 71 11327 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immune dysregulation in human subjects with heterozygous germline mutations in <i>CTLA4</i> . Science, 2014, 345, 1623-1627.	6.0	745
2	Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110 \hat{l} result in T cell senescence and human immunodeficiency. Nature Immunology, 2014, 15, 88-97.	7.0	575
3	The origins, function, and regulation of T follicular helper cells. Journal of Experimental Medicine, 2012, 209, 1241-1253.	4.2	478
4	The good, the bad and the ugly â€" TFH cells in human health and disease. Nature Reviews Immunology, 2013, 13, 412-426.	10.6	475
5	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	6.0	366
6	B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. Journal of Experimental Medicine, 2010, 207, 155-171.	4.2	346
7	Early commitment of naÃ-ve human CD4 ⁺ T cells to the T follicular helper (T _{FH}) cell lineage is induced by ILâ€12. Immunology and Cell Biology, 2009, 87, 590-600.	1.0	310
8	Follicular Helper T Cell Differentiation Requires Continuous Antigen Presentation that Is Independent of Unique B Cell Signaling. Immunity, 2010, 33, 241-253.	6.6	299
9	Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood, 2012, 119, 3997-4008.	0.6	267
10	Intrinsic Differences in the Proliferation of Naive and Memory Human B Cells as a Mechanism for Enhanced Secondary Immune Responses. Journal of Immunology, 2003, 170, 686-694.	0.4	258
11	Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunology, 2009, 10, 1283-1291.	7.0	236
12	Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2015, 136, 993-1006.e1.	1.5	181
13	T Follicular Helper Cells Have Distinct Modes of Migration and Molecular Signatures in Naive and Memory Immune Responses. Immunity, 2015, 42, 704-718.	6.6	159
14	Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. Journal of Experimental Medicine, 2013, 210, 2739-2753.	4.2	158
15	Human T follicular helper (Tfh) cells and disease. Immunology and Cell Biology, 2014, 92, 64-71.	1.0	152
16	Human IFN- \hat{I}^3 immunity to mycobacteria is governed by both IL-12 and IL-23. Science Immunology, 2018, 3, .	5.6	152
17	Stochastic Model of T Cell Proliferation: A Calculus Revealing IL-2 Regulation of Precursor Frequencies, Cell Cycle Time, and Survival. Journal of Immunology, 2003, 170, 4963-4972.	0.4	146
18	TCR affinity and negative regulation limit autoimmunity. Nature Medicine, 2004, 10, 1234-1239.	15.2	138

#	Article	IF	CITATIONS
19	A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Science Immunology, 2018, 3, .	5.6	132
20	Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester. Immunology and Cell Biology, 1999, 77, 516-522.	1.0	125
21	IL-21 signalling via STAT3 primes human na \tilde{A} -ve B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood, 2013, 122, 3940-3950.	0.6	121
22	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	3.9	115
23	Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. Journal of Immunology, 1999, 163, 4707-14.	0.4	110
24	Molecular Pathogenesis of EBV Susceptibility in XLP as Revealed by Analysis of Female Carriers with Heterozygous Expression of SAP. PLoS Biology, 2011, 9, e1001187.	2.6	100
25	Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nature Immunology, 2018, 19, 973-985.	7.0	96
26	The regulation and role of T follicular helper cells in immunity. Immunology, 2011, 134, 361-367.	2.0	89
27	PKCÎ, Signals Activation versus Tolerance In Vivo. Journal of Experimental Medicine, 2004, 199, 743-752.	4.2	82
28	Germline-activating mutations in <i>PIK3CD</i> compromise B cell development and function. Journal of Experimental Medicine, 2018, 215, 2073-2095.	4.2	79
29	Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets. Journal of Experimental Medicine, 2016, 213, 1589-1608.	4.2	77
30	STAT3 is a central regulator of lymphocyte differentiation and function. Current Opinion in Immunology, 2014, 28, 49-57.	2.4	76
31	A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Science Immunology, 2019, 4, .	5.6	75
32	Regulation of T follicular helper cell formation and function by antigen presenting cells. Current Opinion in Immunology, 2011, 23, 111-118.	2.4	74
33	Generation and Characterization of B7-H4/B7S1/B7x-Deficient Mice. Molecular and Cellular Biology, 2006, 26, 6403-6411.	1.1	72
34	Autoimmunity: ILâ€21: a new player in Th17â€cell differentiation. Immunology and Cell Biology, 2007, 85, 503-505.	1.0	72
35	STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. Journal of Experimental Medicine, 2015, 212, 855-864.	4.2	70
36	Decision criteria for resolving isotype switching conflicts by B cells. European Journal of Immunology, 2005, 35, 2949-2955.	1.6	65

#	Article	IF	CITATIONS
37	Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. Journal of Allergy and Clinical Immunology, 2019, 143, 276-291.e6.	1.5	64
38	Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8+ T-cell memory formation and function. Journal of Allergy and Clinical Immunology, 2013, 132, 400-411.e9.	1.5	63
39	câ€Rel but not NFâ€PB1 is important for T regulatory cell development. European Journal of Immunology, 2010, 40, 677-681.	1.6	59
40	Potent antitumour activity of interleukin-2-Fc fusion proteins requires Fc-mediated depletion of regulatory T-cells. Nature Communications, 2017, 8, 15373.	5.8	58
41	Signal Transducer and Activator of Transcription 3 Control of Human T and B Cell Responses. Frontiers in Immunology, 2018, 9, 168.	2.2	50
42	CD4+ and CD8+ T Cell Survival Is Regulated Differentially by Protein Kinase CÎ, c-Rel, and Protein Kinase B. Journal of Immunology, 2007, 178, 2932-2939.	0.4	49
43	Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4+ T cells. Journal of Allergy and Clinical Immunology, 2019, 144, 236-253.	1.5	44
44	Activated PI3K \hat{l}' breaches multiple B cell tolerance checkpoints and causes autoantibody production. Journal of Experimental Medicine, 2020, 217, .	4.2	33
45	The sound of silence: modulating anergy in T lymphocytes. Current Opinion in Immunology, 2007, 19, 658-664.	2.4	32
46	The role of SAP and SLAM family molecules in the humoral immune response. Annals of the New York Academy of Sciences, 2011, 1217, 32-44.	1.8	31
47	B-cell–specific STAT3 deficiency: Insight into the molecular basis ofÂautosomal-dominant hyper-lgE syndrome. Journal of Allergy and Clinical Immunology, 2016, 138, 1455-1458.e3.	1.5	28
48	Immune Dysregulation and Disease Pathogenesis due to Activating Mutations in PIK3CD—the Goldilocks' Effect. Journal of Clinical Immunology, 2019, 39, 148-158.	2.0	26
49	T cell–B cell interactions in primary immunodeficiencies. Annals of the New York Academy of Sciences, 2012, 1250, 1-13.	1.8	25
50	Genomic Spectrum and Phenotypic Heterogeneity of Human IL-21 Receptor Deficiency. Journal of Clinical Immunology, 2021, 41, 1272-1290.	2.0	25
51	Human Th9 cells: inflammatory cytokines modulate ILâ€9 production through the induction of ILâ€21. Immunology and Cell Biology, 2010, 88, 621-623.	1.0	24
52	Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies. Journal of Immunology, 2017, 199, 1949-1958.	0.4	23
53	B cell–intrinsic requirement for STK4 in humoral immunity in mice and human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2302-2305.	1.5	21
54	NK Cells Regulate CD8+ T Cell Mediated Autoimmunity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 36.	1.8	20

#	Article	IF	CITATIONS
55	STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. Journal of Allergy and Clinical Immunology, 2022, 150, 931-946.	1.5	19
56	Elucidating the effects of disease-causing mutations on STAT3 function in autosomal-dominant hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2016, 138, 1210-1213.e5.	1.5	16
57	câ€Rel phenocopies PKCÎ, but not Bclâ€10 in regulating CD8 ⁺ Tâ€eell activation <i>versus</i> tolerance. European Journal of Immunology, 2010, 40, 867-877.	1.6	9
58	The circulating life of a memory T-follicular helper cell. Clinical and Translational Immunology, 2017, 6, e141.	1.7	9
59	Everolimus-Induced Remission of Classic Kaposi's Sarcoma Secondary to Cryptic Splicing Mediated CTLA4 Haploinsufficiency. Journal of Clinical Immunology, 2020, 40, 774-779.	2.0	5
60	Autoimmunity: ILâ€21: a new player in Th17â€cell differentiation. Immunology and Cell Biology, 2008, 86, 478-478.	1.0	4
61	Molecular and cellular mechanisms underlying defective antibody responses. Immunology and Cell Biology, 2020, 98, 467-479.	1.0	4
62	Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Review of Clinical Immunology, 2021, 17, 905-914.	1.3	4
63	Monitoring T Cell Proliferation. , 2005, , 123-141.		4
64	The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunological Reviews, 2022, 307, 134-144.	2.8	4
65	Reversible Suppression of Lymphoproliferation and Thrombocytopenia with Rapamycin in a Patient with Common Variable Immunodeficiency. Journal of Clinical Immunology, 2018, 38, 159-162.	2.0	3
66	Helpful T cells are sticky. Nature, 2008, 455, 745-747.	13.7	2
67	The TORC that Gets the GC Cycling. Immunity, 2017, 46, 974-976.	6.6	1
68	B cells: we need them now more than ever. Immunology and Cell Biology, 2020, 98, 437-438.	1.0	0
69	For whom the B cells toll. Immunology and Cell Biology, 2022, 100, 479-481.	1.0	0