
Steven M Pollard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/683155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science, 2022, 375, eabe8244.	12.6	129
2	Combination of BMI1 and MAPK/ERK inhibitors is effective in medulloblastoma. Neuro-Oncology, 2022, 24, 1273-1285.	1.2	8
3	High SOX9 Maintains Glioma Stem Cell Activity through a Regulatory Loop Involving STAT3 and PML. International Journal of Molecular Sciences, 2022, 23, 4511.	4.1	3
4	The white matter is a pro-differentiative niche for glioblastoma. Nature Communications, 2021, 12, 2184.	12.8	37
5	Clioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell, 2021, 184, 2454-2470.e26.	28.9	165
6	Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nature Communications, 2021, 12, 2148.	12.8	20
7	Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell, 2021, 28, 877-893.e9.	11.1	42
8	LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nature Communications, 2021, 12, 2594.	12.8	40
9	Hierarchical reactivation of transcription during mitosis-to-G1 transition by Brn2 and Ascl1 in neural stem cells. Genes and Development, 2021, 35, 1020-1034.	5.9	11
10	Neural GO: a quiescentâ€like state found in neuroepithelialâ€derived cells and glioma. Molecular Systems Biology, 2021, 17, e9522.	7.2	24
11	Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nature Genetics, 2021, 53, 1221-1232.	21.4	36
12	Post-translational modification of SOX family proteins: Key biochemical targets in cancer?. Seminars in Cancer Biology, 2020, 67, 30-38.	9.6	29
13	Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signaling. Genes and Development, 2020, 34, 1599-1604.	5.9	11
14	Selective toxicity of functionalised graphene oxide to patients-derived glioblastoma stem cells and minimal toxicity to non-cancerous brain tissue cells. 2D Materials, 2020, 7, 045002.	4.4	3
15	Transcriptional and epigenetic regulatory mechanisms in glioblastoma stem cells. , 2020, , 231-255.		1
16	CRISPR/Cas9 gene editing of brain cancer stem cells using lipid-based nano-delivery. Neuro-Oncology, 2019, 21, iv7-iv7.	1.2	2
17	Reprogramming of Fibroblasts to Oligodendrocyte Progenitor-like Cells Using CRISPR/Cas9-Based Synthetic Transcription Factors. Stem Cell Reports, 2019, 13, 1053-1067.	4.8	21
18	Experimental models and tools to tackle glioblastoma. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	70

STEVEN M POLLARD

#	Article	IF	CITATIONS
19	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56
20	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	27.6	0
21	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
22	Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	37
23	Genome Editing in Human Neural Stem and Progenitor Cells. Results and Problems in Cell Differentiation, 2018, 66, 163-182.	0.7	1
24	The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes via Histone Deacetylation. Cancer Research, 2018, 78, 4114-4125.	0.9	56
25	An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein. ELife, 2018, 7, .	6.0	45
26	STAR: A Simple TAL Effector Assembly Reaction Using Isothermal Assembly. Methods in Molecular Biology, 2018, 1772, 477-490.	0.9	1
27	Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development (Cambridge), 2017, 144, 635-648.	2.5	82
28	Oncogenic activity of SOX1 in glioblastoma. Scientific Reports, 2017, 7, 46575.	3.3	27
29	EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors. ACS Synthetic Biology, 2017, 6, 1380-1392.	3.8	62
30	Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes and Development, 2017, 31, 757-773.	5.9	102
31	Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy <i>in vitro</i> . Nanomedicine, 2017, 12, 711-728.	3.3	27
32	The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. Journal of Neuroscience, 2017, 37, 7975-7993.	3.6	21
33	Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening. Molecular and Cellular Neurosciences, 2017, 80, 198-207.	2.2	20
34	Proteome and Secretome Characterization of Glioblastoma-Derived Neural Stem Cells. Stem Cells, 2017, 35, 967-980.	3.2	40
35	High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis, 2017, 6, 401.	4.9	22
36	Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget, 2017, 8, 90164-90175.	1.8	39

STEVEN M POLLARD

#	Article	IF	CITATIONS
37	Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation. ELife, 2016, 5, .	6.0	17
38	Mammalian Synthetic Biology: Time for Big MACs. ACS Synthetic Biology, 2016, 5, 1040-1049.	3.8	22
39	Differentiation therapy for glioblastoma – too many obstacles?. Molecular and Cellular Oncology, 2016, 3, e1124174.	0.7	15
40	STAR: a simple TAL effector assembly reaction using isothermal assembly. Scientific Reports, 2016, 6, 33209.	3.3	13
41	Quantitative stem cell biology: the threat and the glory. Development (Cambridge), 2016, 143, 4097-4100.	2.5	1
42	mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opinion on Therapeutic Targets, 2016, 20, 393-405.	3.4	111
43	Give it a REST!. ELife, 2016, 5, e12615.	6.0	1
44	EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. ELife, 2016, 5, .	6.0	87
45	Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Reports, 2015, 13, 2425-2439.	6.4	146
46	Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest. Stem Cell Reports, 2015, 5, 829-842.	4.8	93
47	Reprogramming cancer cells to pluripotency. Epigenetics, 2014, 9, 798-802.	2.7	16
48	In Vitro Expansion of Fetal Neural Progenitors as Adherent Cell Lines. Methods in Molecular Biology, 2013, 1059, 13-24.	0.9	23
49	The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma. Molecular Aspects of Medicine, 2013, 34, 849-862.	6.4	46
50	Cohesin-mediated interactions organize chromosomal domain architecture. EMBO Journal, 2013, 32, 3119-3129.	7.8	362
51	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	5.9	121
52	Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells. Cancer Discovery, 2013, 3, 198-211.	9.4	78
53	Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A. Genes and Development, 2013, 27, 1032-1045.	5.9	114
54	A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1. PLoS ONE, 2013, 8, e77053.	2.5	53

STEVEN M POLLARD

#	Article	IF	CITATIONS
55	High Content Screening of Defined Chemical Libraries Using Normal and Glioma-Derived Neural Stem Cell Lines. Methods in Enzymology, 2012, 506, 311-329.	1.0	15
56	Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons. PLoS ONE, 2012, 7, e29597.	2.5	254
57	Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. Genome Medicine, 2012, 4, 76.	8.2	48
58	Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. Journal of Cell Science, 2011, 124, 1867-1877.	2.0	59
59	Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochemistry International, 2011, 59, 432-444.	3.8	22
60	Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells <i>In vitro</i> . Glia, 2011, 59, 1588-1599.	4.9	57
61	Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. Development (Cambridge), 2011, 138, e1-e1.	2.5	1
62	Imaging-based chemical screens using normal and glioma-derived neural stem cells. Biochemical Society Transactions, 2010, 38, 1067-1071.	3.4	28
63	Clioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.	11.1	881
64	A Shore Sign of Reprogramming. Cell Stem Cell, 2009, 5, 571-572.	11.1	7
65	Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Molecular and Cellular Neurosciences, 2008, 38, 245-258.	2.2	199
66	Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Molecular and Cellular Neurosciences, 2008, 38, 393-403.	2.2	56
67	A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Molecular and Cellular Neurosciences, 2008, 38, 526-536.	2.2	158
68	REST Regulates Distinct Transcriptional Networks in Embryonic and Neural Stem Cells. PLoS Biology, 2008, 6, e256.	5.6	172
69	Investigating radial glia in vitro. Progress in Neurobiology, 2007, 83, 53-67.	5.7	33
70	Tripotential Differentiation of Adherently Expandable Neural Stem (NS) Cells. PLoS ONE, 2007, 2, e298.	2.5	96
71	Neural Stem Cells, Neurons, and Glia. Methods in Enzymology, 2006, 418, 151-169.	1.0	68
72	Exploitation of adherent neural stem cells in basic and applied neurobiology. Regenerative Medicine, 2006, 1, 111-118.	1.7	28

#	Article	IF	CITATIONS
73	Adherent Neural Stem (NS) Cells from Fetal and Adult Forebrain. Cerebral Cortex, 2006, 16, i112-i120.	2.9	233
74	Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell. PLoS Biology, 2005, 3, e283.	5.6	761