Titia de Lange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829931/publications.pdf

Version: 2024-02-01

		2309	4	1983	
170	45,718	101		173	
papers	citations	h-index		g-index	
198	198	198		22463	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	53BP1–shieldin-dependent DSB processing in BRCA1-deficient cells requires CST–Polα–primase fill-in synthesis. Nature Cell Biology, 2022, 24, 51-61.	4.6	28
2	Expression of BRCA1, BRCA2, RAD51, and other DSB repair factors is regulated by CRL4WDR70. DNA Repair, 2022, 113, 103320.	1.3	2
3	Cryo-EM structure of the human CST–Polα/primase complex in a recruitment state. Nature Structural and Molecular Biology, 2022, 29, 813-819.	3.6	40
4	Structural variant evolution after telomere crisis. Nature Communications, 2021, 12, 2093.	5.8	16
5	The evolution of metazoan shelterin. Genes and Development, 2021, 35, 1625-1641.	2.7	27
6	ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity. PLoS Biology, 2020, 18, e3000594.	2.6	46
7	53BP1: a DSB escort. Genes and Development, 2020, 34, 7-23.	2.7	170
8	Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. Cell, 2020, 183, 197-210.e32.	13.5	141
9	APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nature Genetics, 2020, 52, 884-890.	9.4	106
10	Break-induced replication promotes fragile telomere formation. Genes and Development, 2020, 34, 1392-1405.	2.7	41
11	Characterization of t-loop formation by TRF2. Nucleus, 2020, 11, 164-177.	0.6	34
12	TINF2 is a haploinsufficient tumor suppressor that limits telomere length. ELife, 2020, 9, .	2.8	27
13	Shelterin-Mediated Telomere Protection. Annual Review of Genetics, 2018, 52, 223-247.	3.2	568
14	Protection of telomeres 1 proteins POT1a and POT1b can repress ATR signaling by RPA exclusion, but binding to CST limits ATR repression by POT1b. Journal of Biological Chemistry, 2018, 293, 14384-14392.	1.6	33
15	What I got wrong about shelterin. Journal of Biological Chemistry, 2018, 293, 10453-10456.	1.6	7
16	53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature, 2018, 560, 112-116.	13.7	313
17	Telomeres in cancer: tumour suppression and genome instability. Nature Reviews Molecular Cell Biology, 2017, 18, 175-186.	16.1	505
18	PHF11 promotes DSB resection, ATR signaling, and HR. Genes and Development, 2017, 31, 46-58.	2.7	17

#	Article	lF	CITATIONS
19	The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes and Development, 2017, 31, 578-589.	2.7	54
20	Telomere Recognition and Assembly Mechanism of Mammalian Shelterin. Cell Reports, 2017, 18, 41-53.	2.9	61
21	Not just Salk. Science, 2017, 357, 1105-1106.	6.0	4
22	Nuclear Envelope Rupture Is Enhanced by Loss of p53 or Rb. Molecular Cancer Research, 2017, 15, 1579-1586.	1.5	48
23	TRF2 binds branched DNA to safeguard telomere integrity. Nature Structural and Molecular Biology, 2017, 24, 734-742.	3.6	63
24	Shelterin. Current Biology, 2016, 26, R397-R399.	1.8	55
25	Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Cell Reports, 2016, 17, 1646-1656.	2.9	78
26	TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Molecular Cell, 2016, 61, 236-246.	4.5	48
27	A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. Genes and Development, 2016, 30, 812-826.	2.7	77
28	ATM and ATR Signaling Regulate the Recruitment of Human Telomerase to Telomeres. Cell Reports, 2015, 13, 1633-1646.	2.9	118
29	A loopy view of telomere evolution. Frontiers in Genetics, 2015, 6, 321.	1.1	56
30	Chromothripsis and Kataegis Induced by Telomere Crisis. Cell, 2015, 163, 1641-1654.	13.5	541
31	53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair. Cell, 2015, 163, 880-893.	13.5	251
32	A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice. Genes and Development, 2014, 28, 153-166.	2.7	49
33	TALEN Gene Knockouts Reveal No Requirement for the Conserved Human Shelterin Protein Rap1 in Telomere Protection and Length Regulation. Cell Reports, 2014, 9, 1273-1280.	2.9	56
34	TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes and Development, 2014, 28, 2477-2491.	2.7	156
35	Binding of TPP1 Protein to TIN2 Protein Is Required for POT1a,b Protein-mediated Telomere Protection. Journal of Biological Chemistry, 2014, 289, 24180-24187.	1.6	40
36	53BP1: pro choice in DNA repair. Trends in Cell Biology, 2014, 24, 108-117.	3.6	308

#	Article	IF	Citations
37	TRF2-Tethered TIN2 Can Mediate Telomere Protection by TPP1/POT1. Molecular and Cellular Biology, 2014, 34, 1349-1362.	1.1	69
38	The Role of Double-Strand Break Repair Pathways at Functional and Dysfunctional Telomeres. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016576-a016576.	2.3	107
39	Super-Resolution Fluorescence Imaging of Telomeres Reveals TRF2-Dependent T-loop Formation. Cell, 2013, 155, 345-356.	13.5	400
40	53BP1 Regulates DSB Repair Using Rif1 to Control 5′ End Resection. Science, 2013, 339, 700-704.	6.0	518
41	Role of 53BP1 oligomerization in regulating double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2146-2151.	3.3	64
42	Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway. PLoS Genetics, 2012, 8, e1002772.	1.5	489
43	Telomeric 3′ Overhangs Derive from Resection by Exo1 and Apollo and Fill-In by POT1b-Associated CST. Cell, 2012, 150, 39-52.	13.5	269
44	A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma, 2012, 121, 465-474.	1.0	46
45	Removal of Shelterin Reveals the Telomere End-Protection Problem. Science, 2012, 336, 593-597.	6.0	494
46	Telomere-Driven Tetraploidization Occurs in Human Cells Undergoing Crisis and Promotes Transformation of Mouse Cells. Cancer Cell, 2012, 21, 765-776.	7.7	197
47	Telomere Protection by TPP1/POT1 Requires Tethering to TIN2. Molecular Cell, 2011, 44, 647-659.	4.5	193
48	The Causes and Consequences of Polyploidy in Normal Development and Cancer. Annual Review of Cell and Developmental Biology, 2011, 27, 585-610.	4.0	375
49	Rap1-independent telomere attachment and bouquet formation in mammalian meiosis. Chromosoma, 2011, 120, 151-157.	1.0	37
50	Telomere biology and DNA repair: Enemies with benefits. FEBS Letters, 2010, 584, 3673-3674.	1.3	17
51	Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes and Development, 2010, 24, 2019-2030.	2.7	171
52	In Vivo Stoichiometry of Shelterin Components. Journal of Biological Chemistry, 2010, 285, 1457-1467.	1.6	199
53	Loss of Rap1 Induces Telomere Recombination in the Absence of NHEJ or a DNA Damage Signal. Science, 2010, 327, 1657-1661.	6.0	240
54	Telomere Protection by TPP1 Is Mediated by POT1a and POT1b. Molecular and Cellular Biology, 2010, 30, 1059-1066.	1.1	105

#	Article	IF	CITATIONS
55	Taking apart Rap1. Cell Cycle, 2010, 9, 4061-4067.	1.3	28
56	How Shelterin Solves the Telomere End-Protection Problem. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 167-177.	2.0	142
57	Apollo Contributes to G Overhang Maintenance and Protects Leading-End Telomeres. Molecular Cell, 2010, 39, 606-617.	4.5	136
58	CK2 Phospho-Dependent Binding of R2TP Complex to TEL2 Is Essential for mTOR and SMG1 Stability. Molecular Cell, 2010, 39, 839-850.	4.5	175
59	A Shld1-Controlled POT1a Provides Support for Repression of ATR Signaling at Telomeres through RPA Exclusion. Molecular Cell, 2010, 40, 377-387.	4.5	79
60	Persistent Telomere Damage Induces Bypass of Mitosis and Tetraploidy. Cell, 2010, 141, 81-93.	13.5	248
61	Functional Dissection of Human and Mouse POT1 Proteins. Molecular and Cellular Biology, 2009, 29, 471-482.	1.1	109
62	Cell Cycle-Dependent Role of MRN at Dysfunctional Telomeres: ATM Signaling-Dependent Induction of Nonhomologous End Joining (NHEJ) in G ₁ and Resection-Mediated Inhibition of NHEJ in G ₂ . Molecular and Cellular Biology, 2009, 29, 5552-5563.	1.1	104
63	Mammalian Rif1 contributes to replication stress survival and homology-directed repair. Journal of Cell Biology, 2009, 187, 385-398.	2.3	125
64	Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication. Cell, 2009, 138, 90-103.	13.5	835
65	Human Telomerase Caught in the Act. Cell, 2009, 138, 432-434.	13.5	3
66	How Telomeres Solve the End-Protection Problem. Science, 2009, 326, 948-952.	6.0	720
67	53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature, 2008, 456, 524-528.	13.7	511
68	How Shelterin Protects Mammalian Telomeres. Annual Review of Genetics, 2008, 42, 301-334.	3.2	1,604
69	Engineered telomere degradation models dyskeratosis congenita. Genes and Development, 2008, 22, 1773-1785.	2.7	100
70	No Overt Nucleosome Eviction at Deprotected Telomeres. Molecular and Cellular Biology, 2008, 28, 5724-5735.	1.1	36
71	A Shared Docking Motif in TRF1 and TRF2 Used for Differential Recruitment of Telomeric Proteins. Science, 2008, 319, 1092-1096.	6.0	227
72	Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Genes and Development, 2008, 22, 1221-1230.	2.7	82

#	Article	lF	Citations
73	The Role of the Poly(ADP-ribose) Polymerase Tankyrase1 in Telomere Length Control by the TRF1 Component of the Shelterin Complex. Journal of Biological Chemistry, 2007, 282, 22662-22667.	1.6	63
74	Tel2 Regulates the Stability of PI3K-Related Protein Kinases. Cell, 2007, 131, 1248-1259.	13.5	214
75	Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nature Structural and Molecular Biology, 2007, 14, 754-761.	3.6	167
76	Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 2007, 448, 1068-1071.	13.7	738
77	Mutations that affect meiosis in male mice influence the dynamics of the mid-preleptotene and bouquet stages. Experimental Cell Research, 2006, 312, 3768-3781.	1.2	59
78	Recent Expansion of the Telomeric Complex in Rodents: Two Distinct POT1 Proteins Protect Mouse Telomeres. Cell, 2006, 126, 63-77.	13.5	351
79	Lasker Laurels for Telomerase. Cell, 2006, 126, 1017-1020.	13.5	10
80	Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nature Cell Biology, 2006, 8, 885-890.	4.6	263
81	Apollo, an Artemis-Related Nuclease, Interacts with TRF2 and Protects Human Telomeres in S Phase. Current Biology, 2006, 16, 1295-1302.	1.8	183
82	MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes and Development, 2006, 20, 3238-3243.	2.7	85
83	Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes and Development, 2006, 20, 2648-2653.	2.7	119
84	Telomere-related Genome Instability in Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 197-204.	2.0	155
85	Shelterin: the protein complex that shapes and safeguards human telomeres. Genes and Development, 2005, 19, 2100-2110.	2.7	2,547
86	DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biology, 2005, 7, 712-718.	4.6	531
87	POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO Journal, 2005, 24, 2667-2678.	3.5	269
88	p16INK4a as a Second Effector of the Telomere Damage Pathway. Cell Cycle, 2005, 4, 1364-1368.	1.3	77
89	POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes and Development, 2004, 18, 1649-1654.	2.7	383
90	DNA Binding Features of Human POT1. Journal of Biological Chemistry, 2004, 279, 13241-13248.	1.6	139

#	Article	IF	CITATIONS
91	Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes and Development, 2004, 18, 2108-2119.	2.7	181
92	TIN2 Binds TRF1 and TRF2 Simultaneously and Stabilizes the TRF2 Complex on Telomeres. Journal of Biological Chemistry, 2004, 279, 47264-47271.	1.6	275
93	The Telomeric Protein TRF2 Binds the ATM Kinase and Can Inhibit the ATM-Dependent DNA Damage Response. PLoS Biology, 2004, 2, e240.	2.6	306
94	TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nature Genetics, 2004, 36, 618-623.	9.4	163
95	T-loops and the origin of telomeres. Nature Reviews Molecular Cell Biology, 2004, 5, 323-329.	16.1	381
96	Significant Role for p16INK4a in p53-Independent Telomere-Directed Senescence. Current Biology, 2004, 14, 2302-2308.	1.8	199
97	Regulation of Telomerase by Telomeric Proteins. Annual Review of Biochemistry, 2004, 73, 177-208.	5.0	721
98	Homologous Recombination Generates T-Loop-Sized Deletions at Human Telomeres. Cell, 2004, 119, 355-368.	13.5	462
99	Telomerase Regulation at the Telomere. Cell, 2004, 117, 279-280.	13.5	9
100	DNA Damage Foci at Dysfunctional Telomeres. Current Biology, 2003, 13, 1549-1556.	1.8	1,224
100	DNA Damage Foci at Dysfunctional Telomeres. Current Biology, 2003, 13, 1549-1556. POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423, 1013-1018.	1.8	1,224 600
101	POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423, 1013-1018. ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric	13.7	600
101	POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423, 1013-1018. ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498. Rap1 Affects the Length and Heterogeneity of Human Telomeres. Molecular Biology of the Cell, 2003,	13.7	600 349
101 102 103	POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423, 1013-1018. ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498. Rap1 Affects the Length and Heterogeneity of Human Telomeres. Molecular Biology of the Cell, 2003, 14, 5060-5068. Targeted Deletion Reveals an Essential Function for the Telomere Length Regulator Trf1. Molecular	13.7 4.5 0.9	600 349 141
101 102 103	POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423, 1013-1018. ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498. Rap1 Affects the Length and Heterogeneity of Human Telomeres. Molecular Biology of the Cell, 2003, 14, 5060-5068. Targeted Deletion Reveals an Essential Function for the Telomere Length Regulator Trf1. Molecular and Cellular Biology, 2003, 23, 6533-6541.	13.7 4.5 0.9	600 349 141 150
101 102 103 104	POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423, 1013-1018. ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498. Rap1 Affects the Length and Heterogeneity of Human Telomeres. Molecular Biology of the Cell, 2003, 14, 5060-5068. Targeted Deletion Reveals an Essential Function for the Telomere Length Regulator Trf1. Molecular and Cellular Biology, 2003, 23, 6533-6541. Senescence Induced by Altered Telomere State, Not Telomere Loss. Science, 2002, 295, 2446-2449. DNA Ligase IV-Dependent NHEJ of Deprotected Mammalian Telomeres in G1 and G2. Current Biology,	13.7 4.5 0.9 1.1	600 349 141 150 711

#	Article	IF	CITATIONS
109	NMR structure of the hrap1 myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of myb DNA-binding domains 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2001, 312, 167-175.	2.0	55
110	Structure of the TRFH Dimerization Domain of the Human Telomeric Proteins TRF1 and TRF2. Molecular Cell, 2001, 8, 351-361.	4.5	196
111	T-loop assembly in vitro involves binding of TRF2 near the 3' telomeric overhang. EMBO Journal, 2001, 20, 5532-5540.	3.5	437
112	t-loops at trypanosome telomeres. EMBO Journal, 2001, 20, 579-588.	3.5	196
113	CELL BIOLOGY: Enhanced: Telomere Capping-One Strand Fits All. Science, 2001, 292, 1075-1076.	6.0	65
114	Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genetics, 2000, 25, 347-352.	9.4	560
115	Tankyrase promotes telomere elongation in human cells. Current Biology, 2000, 10, 1299-1302.	1.8	375
116	Control of Human Telomere Length by TRF1 and TRF2. Molecular and Cellular Biology, 2000, 20, 1659-1668.	1,1	663
117	Mammalian Meiotic Telomeres: Protein Composition and Redistribution in Relation to Nuclear Pores. Molecular Biology of the Cell, 2000, 11, 4189-4203.	0.9	142
118	Identification of Human Rap1. Cell, 2000, 101, 471-483.	13.5	518
119	A New Connection at Human Telomeres: Association of the Mre11 Complex with TRF2. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 265-274.	2.0	22
120	Ku Binds Telomeric DNA in Vitro. Journal of Biological Chemistry, 1999, 274, 21223-21227.	1.6	124
121	TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO Journal, 1999, 18, 5735-5744.	3.5	184
122	Unlimited Mileage from Telomerase?. Science, 1999, 283, 947-949.	6.0	66
123	p53- and ATM-Dependent Apoptosis Induced by Telomeres Lacking TRF2. Science, 1999, 283, 1321-1325.	6.0	969
124	Mammalian Telomeres End in a Large Duplex Loop. Cell, 1999, 97, 503-514.	13.5	2,172
125	For Better or Worse? Telomerase Inhibition and Cancer. Cell, 1999, 98, 273-275.	13.5	114
126	Chromosomal Mapping of the Tankyrase Gene in Human and Mouse. Genomics, 1999, 57, 320-321.	1.3	15

#	Article	IF	CITATIONS
127	Ending up with the right partner. Nature, 1998, 392, 753-754.	13.7	64
128	Autoantibodies to DEK oncoprotein in a patient with systemic lupus erythematosus and sarcoidosis. Arthritis and Rheumatism, 1998, 41, 1505-1510.	6.7	38
129	TRF2 Protects Human Telomeres from End-to-End Fusions. Cell, 1998, 92, 401-413.	13.5	1,529
130	TRF1 promotes parallel pairing of telomeric tracts in vitro. Journal of Molecular Biology, 1998, 278, 79-88.	2.0	132
131	CELL BIOLOGY: Telomeres and Senescence: Ending the Debate. Science, 1998, 279, 334-335.	6.0	172
132	Tankyrase, a Poly(ADP-Ribose) Polymerase at Human Telomeres. , 1998, 282, 1484-1487.		882
133	Comparison of the human and mouse genes encoding the telomeric protein, TRF1: chromosomal localization, expression and conserved protein domains. Human Molecular Genetics, 1997, 6, 69-76.	1.4	86
134	Human telomeres contain two distinct Myb–related proteins, TRF1 and TRF2. Nature Genetics, 1997, 17, 231-235.	9.4	849
135	Control of telomere length by the human telomeric protein TRF1. Nature, 1997, 385, 740-743.	13.7	1,109
136	TRF1, a mammalian telomeric protein. Trends in Genetics, 1997, 13, 21-26.	2.9	109
137	TRF1 is a dimer and bends telomeric DNA. EMBO Journal, 1997, 16, 1785-1794.	3.5	289
138	In search of vertebrate telomeric proteins. Seminars in Cell and Developmental Biology, 1996, 7, 23-29.	2.3	8
139	Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex Journal of Cell Biology, 1996, 135, 867-881.	2.3	214
140	Telomerase activity in normal and malignant hematopoietic cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9082-9086.	3.3	667
141	A Human Telomeric Protein. Science, 1995, 270, 1663-1667.	6.0	622
142	Unusual chromatin in human telomeres Molecular and Cellular Biology, 1994, 14, 5777-5785.	1.1	203
143	Activation of telomerase in a human tumor Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2882-2885.	3.3	261
144	Stringent sequence requirements for the formation of human telomeres Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8861-8865.	3.3	193

#	Article	IF	CITATIONS
145	Telomeric structure in cells with chromosome end associations. Chromosoma, 1993, 102, 121-128.	1.0	79
146	A Xenopus egg factor with DNA-binding properties characteristic of terminus-specific telomeric proteins Genes and Development, 1993, 7, 883-894.	2.7	69
147	A mammalian factor that binds telomeric TTAGGG repeats in vitro Molecular and Cellular Biology, 1992, 12, 4834-4843.	1.1	231
148	Human telomeres are attached to the nuclear matrix EMBO Journal, 1992, 11, 717-724.	3.5	304
149	A map of the distal region of the long arm of human chromosome 21 constructed by radiation hybrid mapping and pulsed-field gel electrophoresis. Genomics, 1991, 9, 19-30.	1.3	135
150	Structure and variability of human chromosome ends Molecular and Cellular Biology, 1990, 10, 518-527.	1.1	773
151	Definition of regions in human c-myc that are involved in transformation and nuclear localization Molecular and Cellular Biology, 1987, 7, 1697-1709.	1.1	502
152	Coincident multiple activations of the same surface antigen gene in Trypanosoma brucei. Journal of Molecular Biology, 1987, 194, 81-90.	2.0	34
153	Rapid change of the repertoire of variant surface glycoprotein genes in trypanosomes by gene duplication and deletion. Journal of Molecular Biology, 1986, 190, 1-10.	2.0	27
154	Tubulin mRNAs of Trypanosoma brucei. Journal of Molecular Biology, 1986, 188, 393-402.	2.0	44
155	The Molecular Biology of Antigenic Variation in Trypanosomes: Gene Rearrangements and Discontinuous Transcription. International Review of Cytology, 1986, 99, 85-117.	6.2	10
156	Transcription of a transposed trypanosome surface antigen gene starts upstream of the transposed segment EMBO Journal, 1985, 4, 3299-3306.	3.5	27
157	Discontinuous synthesis of mRNA in trypanosomes EMBO Journal, 1984, 3, 2387-2392.	3.5	139
158	Many trypanosome messenger RNAs share a common 5′ terminal sequence. Nucleic Acids Research, 1984, 12, 3777-3790.	6.5	134
159	Comparison of the genes coding for the common 5′ terminal sequence of messenger RNAs in three trypanosome species. Nucleic Acids Research, 1984, 12, 4431-4443.	6.5	148
160	Two modes of activation of a single surface antigen gene of trypanosoma brucei. Cell, 1984, 36, 163-170.	13.5	126
161	\hat{I}^2 -Globin gene inactivation by DNA translocation in $\hat{I}^3\hat{I}^2$ -thalassaemi. Nature, 1983, 306, 662-666.	13.7	266
162	The control of variant surface antigen synthesis in trypanosomes. FEBS Journal, 1983, 137, 383-389.	0.2	56

#	Article	IF	Citations
163	Tandem repetition of the $5\hat{a}\in^2$ mini-exon of variant surface glycoprotein genes: A multiple promoter for VSG gene transcription?. Cell, 1983, 34, 891-900.	13.5	169
164	Telomere conversion in trypanosomes. Nucleic Acids Research, 1983, 11, 8149-8165.	6.5	80
165	An analysis of cosmid clones of nuclear DNA fromTrypanosoma bruceishows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Research, 1982, 10, 5905-5923.	6.5	257
166	RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Research, 1982, 10, 3591-3604.	6.5	199
167	Genomic environment of the expression-linked extra copies of genes for surface antigens of Trypanosoma brucei resembles the end of a chromosome. Nature, 1982, 299, 451-453.	13.7	198
168	The role of ferritin in developing primary bean leaves under various light conditions. Planta, 1981, 153, 338-342.	1.6	34
169	Energy requirement for maintenance of the transmembrane potassium gradient in Klebsiella aerogenes NCTC 418: A continuous culture study. Archives of Microbiology, 1979, 123, 183-188.	1.0	38
170	Protection of mammalian telomeres. , 0, .		4