
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682979/publications.pdf Version: 2024-02-01

TOM H STEVENS

#	Article	IF	CITATIONS
1	Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell, 1982, 30, 439-448.	28.9	603
2	STRUCTURE, FUNCTION AND REGULATION OF THE VACUOLAR (H+)-ATPase. Annual Review of Cell and Developmental Biology, 1997, 13, 779-808.	9.4	545
3	Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell, 1986, 47, 1041-1051.	28.9	413
4	Protein sorting in yeast: The localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell, 1987, 48, 887-897.	28.9	344
5	[44] Methods for studying the yeast vacuole. Methods in Enzymology, 1991, 194, 644-661.	1.0	334
6	A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell, 1990, 61, 1063-1074.	28.9	287
7	Vacuole Biogenesis in <i>Saccharomyces cerevisiae</i> : Protein Transport Pathways to the Yeast Vacuole. Microbiology and Molecular Biology Reviews, 1998, 62, 230-247.	6.6	255
8	Vps52p, Vps53p, and Vps54p Form a Novel Multisubunit Complex Required for Protein Sorting at the Yeast Late Golgi. Molecular Biology of the Cell, 2000, 11, 305-323.	2.1	254
9	Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 438-454.	4.1	253
10	The Yeast v-SNARE Vti1p Mediates Two Vesicle Transport Pathways through Interactions with the t-SNAREs Sed5p and Pep12p. Journal of Cell Biology, 1997, 137, 1511-1524.	5.2	198
11	VMA11 and VMA16 Encode Second and Third Proteolipid Subunits of the Saccharomyces cerevisiae Vacuolar Membrane H+-ATPase. Journal of Biological Chemistry, 1997, 272, 4795-4803.	3.4	192
12	Evolution of increased complexity in a molecular machine. Nature, 2012, 481, 360-364.	27.8	181
13	Protein-Protein Interactions of ESCRT Complexes in the Yeast Saccharomyces cerevisiae. Traffic, 2004, 5, 194-210.	2.7	180
14	The Amino-terminal Domain of the Vacuolar Proton-translocating ATPase a Subunit Controls Targeting and in Vivo Dissociation, and the Carboxyl-terminal Domain Affects Coupling of Proton Transport and ATP Hydrolysis. Journal of Biological Chemistry, 2001, 276, 47411-47420.	3.4	179
15	The Sodium/Proton Exchanger Nhx1p Is Required for Endosomal Protein Trafficking in the YeastSaccharomyces cerevisiae. Molecular Biology of the Cell, 2000, 11, 4277-4294.	2.1	168
16	Vps51p Mediates the Association of the GARP (Vps52/53/54) Complex with the Late Golgi t-SNARE Tlg1p. Molecular Biology of the Cell, 2003, 14, 1610-1623.	2.1	162
17	Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 211-230.	4.1	161
18	Three v-SNAREs and Two t-SNAREs, Present in a Pentameric cis-SNARE Complex on Isolated Vacuoles, Are Essential for Homotypic Fusion. Journal of Cell Biology, 1999, 145, 1435-1442.	5.2	151

#	Article	IF	CITATIONS
19	The <i>Saccharomyces cerevisiae</i> v-SNARE Vti1p Is Required for Multiple Membrane Transport Pathways to the Vacuole. Molecular Biology of the Cell, 1999, 10, 1719-1732.	2.1	150
20	The Membrane Protein Alkaline Phosphatase Is Delivered to the Vacuole by a Route That Is Distinct from the VPS-dependent Pathway. Journal of Cell Biology, 1997, 138, 531-545.	5.2	149
21	The Bafilomycin/Concanamycin Binding Site in Subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 33131-33138.	3.4	130
22	The Plant Vesicle-associated SNARE AtVTI1a Likely Mediates Vesicle Transport from the <i>Trans</i> -Golgi Network to the Prevacuolar Compartment. Molecular Biology of the Cell, 1999, 10, 2251-2264.	2.1	117
23	Retrograde Traffic Out of the Yeast Vacuole to the TGN Occurs via the Prevacuolar/Endosomal Compartment. Journal of Cell Biology, 1998, 142, 651-663.	5.2	111
24	ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nature Communications, 2016, 7, 11600.	12.8	110
25	Molecular Characterization of the Yeast Vacuolar H+-ATPase Proton Pore. Journal of Biological Chemistry, 2000, 275, 23654-23660.	3.4	106
26	Biogenesis of the Vacuole in Saccharomyces cerevisiae. International Review of Cytology, 1992, 139, 59-120.	6.2	103
27	Retrieval of Resident Late-Golgi Membrane Proteins from the Prevacuolar Compartment of Saccharomyces cerevisiae Is Dependent on the Function of Grd19p. Journal of Cell Biology, 1998, 140, 577-590.	5.2	102
28	Assembly of the Yeast Vacuolar H+-ATPase Occurs in the Endoplasmic Reticulum and Requires a Vma12p/Vma22p Assembly Complex. Journal of Cell Biology, 1998, 142, 39-49.	5.2	100
29	<i>VPS21</i> Controls Entry of Endocytosed and Biosynthetic Proteins into the Yeast Prevacuolar Compartment. Molecular Biology of the Cell, 2000, 11, 613-626.	2.1	99
30	Structure and assembly of the yeast V-ATPase. Journal of Bioenergetics and Biomembranes, 2003, 35, 301-312.	2.3	99
31	Two Separate Signals Act Independently to Localize a Yeast Late Golgi Membrane Protein through a Combination of Retrieval and Retention. Journal of Cell Biology, 1997, 136, 287-297.	5.2	97
32	V1-situated Stalk Subunits of the Yeast Vacuolar Proton-translocating ATPase. Journal of Biological Chemistry, 1997, 272, 26787-26793.	3.4	94
33	Vta1p and Vps46p regulate the membrane association and ATPase activity of Vps4p at the yeast multivesicular body. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6202-6207.	7.1	89
34	Yeast carboxypeptidase Y requires glycosylation for efficient intracellular transport, but not for vacuolar sorting, in vivo stability, or activity. FEBS Journal, 1991, 197, 681-689.	0.2	81
35	Role of Vma21p in Assembly and Transport of the Yeast Vacuolar ATPase. Molecular Biology of the Cell, 2004, 15, 5075-5091.	2.1	81
36	Protein targeting to the yeast vacuole. Trends in Biochemical Sciences, 1989, 14, 347-350.	7.5	80

#	Article	IF	CITATIONS
37	Pep12p is a Multifunctional Yeast Syntaxin that Controls Entry of Biosynthetic, Endocytic and Retrograde Traffic into the Prevacuolar Compartment. Traffic, 2000, 1, 259-269.	2.7	75
38	Ykt6p Is a Multifunctional Yeast R-SNARE That Is Required for Multiple Membrane Transport Pathways to the Vacuole. Molecular Biology of the Cell, 2003, 14, 1868-1881.	2.1	75
39	Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. Journal of Bioenergetics and Biomembranes, 1992, 24, 383-393.	2.3	72
40	Vacuolar biogenesis in yeast: Sorting out the sorting proteins. Cell, 1995, 83, 513-516.	28.9	67
41	VMA12 Encodes a Yeast Endoplasmic Reticulum Protein Required for Vacuolar H+-ATPase Assembly. Journal of Biological Chemistry, 1997, 272, 25928-25934.	3.4	61
42	Vma22p Is a Novel Endoplasmic Reticulum-associated Protein Required for Assembly of the Yeast Vacuolar H+-ATPase Complex. Journal of Biological Chemistry, 1995, 270, 22329-22336.	3.4	60
43	Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: A VPS45-dependent intracellular route and a VPS45-independent, endocytic route. European Journal of Cell Biology, 1998, 76, 43-52.	3.6	60
44	VMA8 Encodes a 32-kDa V1 Subunit of the Saccharomyces cerevisiae Vacuolar H+-ATPase Required for Function and Assembly of the Enzyme Complex. Journal of Biological Chemistry, 1995, 270, 15037-15044.	3.4	55
45	Topological Characterization of the c, c′, and c″ Subunits of the Vacuolar ATPase from the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 39856-39862.	3.4	52
46	Homotypic Vacuole Fusion in Yeast Requires Organelle Acidification and Not the V-ATPase Membrane Domain. Developmental Cell, 2013, 27, 462-468.	7.0	52
47	A Human Homolog Can Functionally Replace the Yeast Vesicle-associated SNARE Vti1p in Two Vesicle Transport Pathways. Journal of Biological Chemistry, 1998, 273, 2624-2630.	3.4	51
48	Sorting of the Yeast Vacuolar-type, Proton-translocating ATPase Enzyme Complex (V-ATPase). Journal of Biological Chemistry, 2012, 287, 19487-19500.	3.4	49
49	Studying yeast vacuoles. Methods in Enzymology, 2002, 351, 408-432.	1.0	48
50	Voa1p Functions in V-ATPase Assembly in the Yeast Endoplasmic Reticulum. Molecular Biology of the Cell, 2008, 19, 5131-5142.	2.1	46
51	ldentification of a Mammalian Golgi Sec1p-like Protein, mVps45. Journal of Biological Chemistry, 1997, 272, 6187-6193.	3.4	42
52	PKR1Encodes an Assembly Factor for the Yeast V-Type ATPase. Journal of Biological Chemistry, 2006, 281, 32025-32035.	3.4	34
53	Global Analysis of Yeast Endosomal Transport Identifies the Vps55/68 Sorting Complex. Molecular Biology of the Cell, 2008, 19, 1282-1294.	2.1	33
54	Mutations in the Vâ€ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease. Hepatology, 2020, 72, 1968-1986.	7.3	32

#	Article	IF	CITATIONS
55	Vma9p (Subunit e) Is an Integral Membrane V0 Subunit of the Yeast V-ATPase. Journal of Biological Chemistry, 2006, 281, 15312-15319.	3.4	30
56	The Yeast Endosomal t-SNARE, Pep12p, Functions in the Absence of its Transmembrane Domain. Traffic, 2000, 1, 45-55.	2.7	28
57	A Genome-Wide Enhancer Screen Implicates Sphingolipid Composition in Vacuolar ATPase Function in <i>Saccharomyces cerevisiae</i> . Genetics, 2011, 187, 771-783.	2.9	27
58	Title is missing!. Journal of Bioenergetics and Biomembranes, 1999, 31, 39-47.	2.3	27
59	The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2011, 22, 3176-3191.	2.1	25
60	ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Molecular Biology of the Cell, 2018, 29, 2156-2164.	2.1	24
61	The Yeast <i>vps</i> Class E Mutants: The Beginning of the Molecular Genetic Analysis of Multivesicular Body Biogenesis. Molecular Biology of the Cell, 2010, 21, 4057-4060.	2.1	23
62	Inhibitory effects of HSP70 chaperones on nascent polypeptides. Protein Science, 1992, 1, 980-985.	7.6	20
63	Protein sorting in yeast: the role of the vacuolar protontranslocating ATPase. Journal of Cell Science, 1989, 1989, 161-178.	2.0	17
64	Arabidopsis has Two Functional Orthologs of the Yeast Vâ€ATPase Assembly Factor Vma21p. Traffic, 2008, 9, 1618-1628.	2.7	15
65	Structures of yeast vesicle trafficking proteins. Protein Science, 1999, 8, 2465-2473.	7.6	11
66	Functional Characterization of the N-terminal Domain of Subunit H (Vma13p) of the Yeast Vacuolar ATPase. Journal of Biological Chemistry, 2008, 283, 29099-29108.	3.4	11
67	Misuse of Journal Impact Factors in Scientific Assessment. Traffic, 2013, 14, 611-612.	2.7	9
68	The <i>VPS1</i> Protein is a Dynamin‣ike GTPase Required for Sorting Proteins to the Yeast Vacuole. Novartis Foundation Symposium, 1993, 176, 198-217.	1.1	9
69	Editorial. Traffic, 2013, 14, 1-1.	2.7	8
70	PKR1 Encodes an Assembly Factor for the Yeast V-Type ATPase. Journal of Biological Chemistry, 2006, 281, 32025-32035.	3.4	4
71	Fundamental mechanisms deliver the Nobel Prize to Ohsumi. Traffic, 2017, 18, 93-95.	2.7	3
72	Protein Sorting and Biogenesis of the Lysosome-like Vacuole in Yeast. , 1988, , 317-362.		3

#	Article	IF	CITATIONS
73	A new direction for <scp>Traffic</scp> . Traffic, 2020, 21, 724-724.	2.7	2
74	Trafficking to a Nobel Prize. Traffic, 2013, 14, 1193-1193.	2.7	1
75	Chapter 14 The sorting of soluble and integral membrane proteins to the yeast vacuole. New Comprehensive Biochemistry, 1992, 22, 165-182.	0.1	0
76	Editorial. Traffic, 2015, 16, 1209-1209.	2.7	0