Susanna Amadio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829499/publications.pdf

Version: 2024-02-01

59 papers 2,684 citations

186265
28
h-index

50 g-index

59 all docs 59 docs citations

59 times ranked 2834 citing authors

#	Article	IF	CITATIONS
1	Up-regulation of p2x2, p2x4 receptor and ischemic cell death: prevention by p2 antagonists. Neuroscience, 2003, 120, 85-98.	2.3	147
2	Extracellular ATP and Neurodegeneration. CNS and Neurological Disorders, 2003, 2, 403-412.	4.3	144
3	P2X7 Receptor Modulation on Microglial Cells and Reduction of Brain Infarct Caused by Middle Cerebral Artery Occlusion in Rat. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 974-982.	4.3	141
4	P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology, 2002, 42, 489-501.	4.1	131
5	Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia, 2005, 50, 132-144.	4.9	129
6	ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Research Reviews, 2005, 48, 157-165.	9.0	125
7	MicroRNA-125b regulates microglia activation and motor neuron death in ALS. Cell Death and Differentiation, 2016, 23, 531-541.	11.2	109
8	P2 receptor web: Complexity and fine-tuning. , 2006, 112, 264-280.		101
9	Spinal cord pathology is ameliorated by P2X7 antagonism in SOD1-G93A mouse model of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2014, 7, 1101-9.	2.4	95
10	Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience, 2001, 108, 527-534.	2.3	89
11	Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 4102-4116.	2.9	88
12	Synaptic P2X7 and Oxygen/Glucose Deprivation in Organotypic Hippocampal Cultures. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 392-398.	4.3	69
13	Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: An immunohistological study. Purinergic Signalling, 2007, 3, 389-398.	2.2	69
14	P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia. Frontiers in Cellular Neuroscience, 2017, 11, 249.	3.7	67
15	P2Y ₁₂ Receptor on the Verge of a Neuroinflammatory Breakdown. Mediators of Inflammation, 2014, 2014, 1-15.	3.0	65
16	P2Y12 Receptor Protein in Cortical Gray Matter Lesions in Multiple Sclerosis. Cerebral Cortex, 2010, 20, 1263-1273.	2.9	64
17	Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology, 2016, 104, 180-193.	4.1	62
18	P2X3receptor localizes into lipid rafts in neuronal cells. Journal of Neuroscience Research, 2004, 76, 653-661.	2.9	59

#	Article	IF	CITATIONS
19	Clemastine Confers Neuroprotection and Induces an Anti-Inflammatory Phenotype in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2016, 53, 518-531.	4.0	58
20	Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 1529.	4.8	53
21	Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. Journal of Neuroinflammation, 2016, 13, 191.	7.2	51
22	Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain. Neuroscience, 2006, 141, 1171-1180.	2.3	44
23	The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells. Neurobiology of Disease, 2005, 18, 100-109.	4.4	39
24	Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. Journal of Neurochemistry, 2011, 116, 796-805.	3.9	38
25	Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Frontiers in Immunology, 2017, 8, 1689.	4.8	37
26	Do ATP and NO interact in the CNS?. Progress in Neurobiology, 2008, 84, 40-56.	5.7	36
27	Membrane compartments and purinergic signalling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS Journal, 2009, 276, 354-364.	4.7	35
28	Role of the metabotropic P2Y4 receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor. Experimental Cell Research, 2004, 300, 149-158.	2.6	33
29	A novel pathway of cell growth regulation mediated by a PLA 2 αâ€derived phosphoinositide metabolite. FASEB Journal, 2006, 20, 2567-2569.	0.5	32
30	Histaminergic transmission slows progression of amyotrophic lateral sclerosis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 872-893.	7.3	27
31	The S100B Inhibitor Pentamidine Ameliorates Clinical Score and Neuropathology of Relapsing—Remitting Multiple Sclerosis Mouse Model. Cells, 2020, 9, 748.	4.1	26
32	Differences in the neurotoxicity profile induced by ATP and ATPÎ ³ S in cultured cerebellar granule neurons. Neurochemistry International, 2005, 47, 334-342.	3.8	24
33	Drug Repurposing: A Network-based Approach to Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2021, 18, 1678-1691.	4.4	24
34	The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signalling, 2006, 2, 575-582.	2.2	23
35	Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cellular and Molecular Life Sciences, 2021, 78, 6143-6160.	5.4	23
36	P2 Receptor Antagonist Trinitrophenyl-Adenosine-Triphosphate Protects Hippocampus from Oxygen and Glucose Deprivation Cell Death. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 70-77.	2.5	22

#	Article	IF	Citations
37	Extracellular adenosine triphosphate induces glutamate transporter-1 expression in hippocampus. Hippocampus, 2007, 17, 305-315.	1.9	21
38	Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels. BMC Neuroscience, 2013, 14, 121.	1.9	21
39	Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1 ^{G93A} mice. British Journal of Pharmacology, 2022, 179, 1732-1752.	5.4	21
40	Activation of skeletal muscle–resident glial cells upon nerve injury. JCI Insight, 2021, 6, .	5.0	20
41	Where and Why Modeling Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 3977.	4.1	20
42	Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neuroscience and Biobehavioral Reviews, 2021, 127, 446-458.	6.1	20
43	Receptor webs: Can the chunking theory tell us more about it?. Brain Research Reviews, 2008, 59, 1-8.	9.0	18
44	P2Y1 receptor switches to neurons from glia in juvenile versus neonatal rat cerebellar cortex. BMC Developmental Biology, 2007, 7, 77.	2.1	17
45	Functional microglia neurotransmitters in amyotrophic lateral sclerosis. Seminars in Cell and Developmental Biology, 2019, 94, 121-128.	5.0	17
46	Protein cooperation: From neurons to networks. Progress in Neurobiology, 2008, 86, 61-71.	5.7	16
47	Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Research Reviews, 2020, 62, 101121.	10.9	16
48	N-Glycans mutations rule oligomeric assembly and functional expression of P2X3 receptor for extracellular ATP. Glycobiology, 2011, 21, 634-643.	2.5	15
49	S100B Protein as a Therapeutic Target in Multiple Sclerosis: The S100B Inhibitor Arundic Acid Protects from Chronic Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2021, 22, 13558.	4.1	14
50	Duality of P2X7 Receptor in Amyotrophic Lateral Sclerosis. Frontiers in Pharmacology, 2020, 11, 1148.	3.5	13
51	Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. International Journal of Molecular Sciences, 2021, 22, 10649.	4.1	13
52	Histamine Is an Inducer of the Heat Shock Response in SOD1-G93A Models of ALS. International Journal of Molecular Sciences, 2019, 20, 3793.	4.1	11
53	Partial resistance of ataxin-2-containing olivary and pontine neurons to axotomy-induced degeneration. Brain Research Bulletin, 2005, 66, 212-221.	3.0	10
54	Nerve Growth Factor Neutralization Promotes Oligodendrogenesis by Increasing miR-219a-5p Levels. Cells, 2021, 10, 405.	4.1	7

#	Article	IF	CITATIONS
55	Functional Inactivation of Drosophila GCK Orthologs Causes Genomic Instability and Oxidative Stress in a Fly Model of MODY-2. International Journal of Molecular Sciences, 2021, 22, 918.	4.1	5
56	Repurposing Histaminergic Drugs in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 6347.	4.1	5
57	The Histamine and Multiple Sclerosis Alliance: Pleiotropic Actions and Functional Validation. Current Topics in Behavioral Neurosciences, 2021, , 217-239.	1.7	4
58	Commentary: (Research Highlights Inflammation, Demyelination and Neurodegeneration: Risky Buddies) Tj ETQ	q0	BT /Qverlock 10
59	Micropatterned Geometry Shape Oligodendrocyte and Microglia Plasticity. Methods in Molecular Biology, 2018, 1727, 139-154.	0.9	O