Gregory R Lumpkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829307/publications.pdf

Version: 2024-02-01

257450 265206 1,792 59 24 42 citations g-index h-index papers 60 60 60 1271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Profiling hot isostatically pressed canister–wasteform interaction for Puâ€bearing zirconoliteâ€rich wasteforms. Journal of the American Ceramic Society, 2022, 105, 5359-5372.	3.8	5
2	The ion irradiation tolerance of the fluorite RE2MO5 (RE = Sm, and Yb, M = Ti, Zr, and Sn) system of the Australian Ceramic Society, 2022, 58, 287-298.	n Journal 1.9	2
3	Synthesis and ion-irradiation tolerance of the Dy2TiO5 polymorphs. Acta Materialia, 2021, 204, 116518.	7.9	6
4	Perspectives on Pyrochlores, Defect Fluorites, and Related Compounds: Building Blocks for Chemical Diversity and Functionality. Frontiers in Chemistry, 2021, 9, 778140.	3.6	9
5	Novel complex ceramic oxides, Ln ₂ TiO ₅ (LnÂ=ÂLa, Sm, Gd, Tb, Dy, Ho, Er, and Yb), for polyphase nuclear wasteâ€forms. Journal of the American Ceramic Society, 2020, 103, 5536-5545.	3.8	5
6	Ion beam irradiation of ABO ₄ compounds with the fergusonite, monazite, scheelite, and zircon structures. Journal of the American Ceramic Society, 2020, 103, 5502-5514.	3.8	9
7	The ion-irradiation tolerance of the pyrochlore to fluorite Ho(x)Yb(2-x)TiO5 and Er2TiO5 compounds: A TEM comparative study using both in-situ and bulk ex-situ irradiation approaches. Journal of Nuclear Materials, 2018, 507, 316-326.	2.7	13
8	In-situ irradiation of Ca1-xLa2/3xTiO3 defect perovskites: The role of vacancies in recovery. Materialia, 2018, 3, 186-191.	2.7	11
9	The crystal structures and corresponding ion-irradiation response for the Tb(x)Yb(2â°'x)TiO5 series. Ceramics International, 2018, 44, 511-519.	4.8	15
10	11. Titanate ceramics for high-level nuclear waste immobilization. , 2017, , 223-242.		1
11	New insights into phase distribution, phase composition and disorder in Y ₂ (Zr,Sn) ₂ O ₇ ceramics from NMR spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 9049-9059.	2.8	22
12	Soft chemical synthesis and structural characterization of Y2HfxTi2â^'xO7. Ceramics International, 2015, 41, 5309-5317.	4.8	20
13	New pathway for the preparation of pyrochlore Nd2Zr2O7 nanoparticles. Ceramics International, 2015, 41, 7618-7625.	4.8	17
14	Lightning-induced shock lamellae in quartz. American Mineralogist, 2015, 100, 1645-1648.	1.9	21
15	Ion-irradiation resistance of the orthorhombic Ln2TiO5 (LnÂ=ÂLa, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series. Journal of Nuclear Materials, 2015, 467, 683-691.	2.7	20
16	Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2â^'x)TiO5 series. Journal of Solid State Chemistry, 2014, 213, 182-192.	2.9	31
17	Microporous gold: Comparison of textures from Nature and experiments. American Mineralogist, 2014, 99, 1171-1174.	1.9	20
18	Synthesis and characterization of Nd2SnxZr2â^'xO7 pyrochlore ceramics. Ceramics International, 2014, 40, 651-657.	4.8	31

#	Article	IF	Citations
19	Microstructural Evolution of an Ion Irradiated Ni–Mo–Cr–Fe Alloy at Elevated Temperatures. Materials Transactions, 2014, 55, 428-433.	1.2	8
20	The incorporation of plutonium in lanthanum zirconate pyrochlore. Journal of Nuclear Materials, 2013, 443, 444-451.	2.7	44
21	The pyrochlore to defect fluorite phase transition in Y2Sn2â^'xZrxO7. RSC Advances, 2013, 3, 5090.	3.6	55
22	Crystal chemistry and structures of uranium-doped gadolinium zirconates. Journal of Nuclear Materials, 2013, 438, 144-153.	2.7	50
23	Gradual Structural Evolution from Pyrochlore to Defect-Fluorite in Y ₂ Sn _{2–<i>x</i>} Zr _{<i>x</i>} O ₇ : Average vs Local Structure. Journal of Physical Chemistry C, 2013, 117, 26740-26749.	3.1	54
24	Positron Annihilation in Offâ€Stoichiometric and Taâ€Doped <scp><scp>Zn</scp></scp> 4. Journal of the American Ceramic Society, 2013, 96, 3286-3289.	3.8	3
25	Chemistry and radiation effects of davidite. American Mineralogist, 2013, 98, 275-278.	1.9	5
26	Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. American Mineralogist, 2012, 97, 291-298.	1.9	28
27	The Structural Characterization of a Series of Uranium-containing Gadolinium Zirconates. Materials Research Society Symposia Proceedings, 2012, 1475, 179.	0.1	0
28	An Experimental Determination of the Thermophysical Properties of [NZP]-Structure Type Ceramics. Materials Research Society Symposia Proceedings, 2012, 1475, 215.	0.1	0
29	The Role of Sn, Zr and Hf in the Radiation Damage in II, III, IV and V Pyrochlores. Materials Research Society Symposia Proceedings, 2012, 1383, 29.	0.1	0
30	Radiation Damage of II, III, IV, V Pyrochlores - CaLnZrNbO7. Materials Research Society Symposia Proceedings, 2012, 1475, 571.	0.1	0
31	Ion irradiation of novel yttrium/ytterbium-based pyrochlores: The effect of disorder. Acta Materialia, 2011, 59, 7530-7537.	7.9	48
32	Ion-beam irradiation of lanthanum compounds in the systems La2O3–Al2O3 and La2O3–TiO2. Journal of Solid State Chemistry, 2010, 183, 2416-2420.	2.9	38
33	Ion Beam Irradiation of Lanthanum Compounds in the Series La2O3-TiO2. Materials Research Society Symposia Proceedings, 2010, 1265, 1.	0.1	0
34	Ion irradiation of the TiO2 polymorphs and cassiterite. American Mineralogist, 2010, 95, 192-195.	1.9	18
35	Mechanisms of Radiation Damage and Properties of Nuclear Materials. Materials Research Society Symposia Proceedings, 2009, 1215, 1.	0.1	0
36	Radiation Damage in Materials – Effects of Disorder. Materials Research Society Symposia Proceedings, 2009, 1193, .	0.1	1

#	Article	IF	Citations
37	Lanthanum pyrochlores and the effect of yttrium addition in the systems La2â^'xYxZr2O7 and La2â^'xYxHf2O7. Journal of Solid State Chemistry, 2009, 182, 442-450.	2.9	87
38	Ion Irradiation of Ternary Pyrochlore Oxides. Chemistry of Materials, 2009, 21, 2746-2754.	6.7	46
39	Experimental and atomistic modeling study of ion irradiation damage in thin crystals of the TiO2 polymorphs. Physical Review B, 2008, 77, .	3.2	43
40	In Situ Radiation Damage Studies of Ca3Zr2FeAlSiO12 and Ca3Hf2FeAlSiO12. Materials Research Society Symposia Proceedings, 2008, 1124, 1.	0.1	0
41	<i>ln situ</i> radiation damage studies of LaxSr1â^'3xâ^•2TiO3 perovskites. Journal of Applied Physics, 2008, 103, .	2.5	25
42	Pyrochlore to Fluorite Transitions – Ordering in Fluorites?. Materials Research Society Symposia Proceedings, 2008, 1122, 1.	0.1	0
43	Ion Irradiation of Ternary Pyrochlores. Materials Research Society Symposia Proceedings, 2008, 1122, 3.	0.1	1
44	On the Characterisatiopn of Order-Disorder in Ion-Irradiated Pyrochlore Compounds by Electron Scattering Methods. Materials Research Society Symposia Proceedings, 2008, 1122, 3.	0.1	0
45	Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds. Journal of Solid State Chemistry, 2007, 180, 1512-1518.	2.9	119
46	Nuclear waste forms. Geological Society Special Publication, 2004, 236, 37-63.	1.3	37
47	Temperature dependence of ion irradiation damage in the pyrochlores La2Zr2O7and La2Hf2O7. Journal of Physics Condensed Matter, 2004, 16, 8557-8570.	1.8	53
48	Aqueous Dissolution and Surface Alteration Studies of Nd-bearing Zirconolite in 0.001M Citric Acid at 90°C. Materials Research Society Symposia Proceedings, 2003, 807, 771.	0.1	1
49	Incorporation of Uranium in Zirconolite (CaZrTi ₂ O ₇). Journal of the American Ceramic Society, 2002, 85, 1853-1859.	3.8	117
50	Crystal chemistry and durability of the spinel structure type in natural systems. Progress in Nuclear Energy, 2001, 38, 447-454.	2.9	17
51	Alpha-decay damage and aqueous durability of actinide host phases in natural systems. Journal of Nuclear Materials, 2001, 289, 136-166.	2.7	212
52	Heavy ion irradiation studies of columbite, brannerite, and pyrochlore structure types. Journal of Nuclear Materials, 2001, 289, 177-187.	2.7	46
53	In situ studies of ion irradiated zirconolite, pyrochlore and perovskite. Journal of Nuclear Materials, 1997, 250, 36-52.	2.7	78
54	Application of analytical electron microscopy to the study of radiation damage in the complex oxide mineral zirconolite. Micron, 1997, 28, 57-68.	2.2	31

#	Article	IF	CITATIONS
55	Geochemical alteration of pyrochlore group minerals; pyrochlore subgroup. American Mineralogist, 1995, 80, 732-743.	1.9	167
56	Determination of 25 elements in the complex oxide mineral zirconolite by analytical electron microscopy. Micron, 1994, 25, 581-587.	2.2	55
57	Alpha-recoil damage in titanite (CaTiSiO ₅): Direct observation and annealing study using high resolution transmission electron microscopy. Journal of Materials Research, 1991, 6, 560-564.	2.6	30
58	Natural Pyrochlores: Analogues For Actinide Host Phases in Radioactive Waste Forms. Materials Research Society Symposia Proceedings, 1984, 44, 647.	0.1	12
59	Crystal chemistry and ionâ€irradiation resistance of Ln 2 ZrO 5 compounds with Ln Â=ÂSm, Eu, Gd, and Tb. Journal of the American Ceramic Society, 0, , .	3.8	2