Dirk Jochmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6829107/publications.pdf

Version: 2024-02-01

126907 95266 5,283 78 33 citations h-index papers

g-index 100 100 100 8195 times ranked docs citations citing authors all docs

68

#	Article	IF	CITATIONS
1	Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. Journal of Medicinal Chemistry, 2022, 65, 2794-2808.	6.4	52
2	Synthesis, X-ray crystallographic analysis, DFT studies and biological evaluation of triazolopyrimidines and 2-anilinopyrimidines. Journal of Molecular Structure, 2022, 1252, 132092.	3.6	2
3	Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Research, 2022, 198, 105252.	4.1	302
4	Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Molecules, 2022, 27, 1052.	3.8	4
5	Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society, 2022, 144, 2905-2920.	13.7	118
6	Development and optimization of a highâ€throughput screening assay for in vitro antiâ€SARSâ€CoVâ€2 activity: Evaluation of 5676 Phase 1 Passed Structures. Journal of Medical Virology, 2022, 94, 3101-3111.	5.0	13
7	Ivermectin Does Not Protect against SARS-CoV-2 Infection in the Syrian Hamster Model. Microorganisms, 2022, 10, 633.	3.6	3
8	HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect. Antiviral Research, 2022, 202, 105311.	4.1	8
9	The oral protease inhibitor (PF-07321332) protects Syrian hamsters against infection with SARS-CoV-2 variants of concern. Nature Communications, 2022, 13, 719.	12.8	86
10	Discovery of 2-Phenylquinolines with Broad-Spectrum Anti-coronavirus Activity. ACS Medicinal Chemistry Letters, 2022, 13, 855-864.	2.8	10
11	SARS-CoV-2 Virion Infectivity and Cytokine Production in Primary Human Airway Epithelial Cells. Viruses, 2022, 14, 951.	3 . 3	6
12	Cytopathic SARS-CoV-2 screening on VERO-E6 cells in a large-scale repurposing effort. Scientific Data, 2022, 9, .	5. 3	17
13	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	4.1	8
14	SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nature Chemical Biology, 2021, 17, 222-228.	8.0	215
15	Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. Journal of Physical Chemistry Letters, 2021, 12, 1793-1802.	4.6	77
16	Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nature Genetics, 2021, 53, 435-444.	21.4	162
17	Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacology and Translational Science, 2021, 4, 1096-1110.	4.9	101
18	Betulonic Acid Derivatives Interfering with Human Coronavirus 229E Replication via the nsp15 Endoribonuclease. Journal of Medicinal Chemistry, 2021, 64, 5632-5644.	6.4	26

#	Article	IF	CITATIONS
19	Itraconazole for COVID-19: preclinical studies and a proof-of-concept randomized clinical trial. EBioMedicine, 2021, 66, 103288.	6.1	21
20	ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits inÂvivo efficacy in a Syrian Hamster model. Biochemical and Biophysical Research Communications, 2021, 555, 134-139.	2.1	30
21	In vitro activity of itraconazole against SARSâ€CoVâ€2. Journal of Medical Virology, 2021, 93, 4454-4460.	5.0	30
22	Chemische Evolution antiviraler Wirkstoffe gegen Enterovirus D68 durch Proteintemplatâ€gesteuerte Knoevenagelreaktionen. Angewandte Chemie, 2021, 133, 13405-13413.	2.0	1
23	Chemical Evolution of Antivirals Against Enterovirus D68 through Proteinâ€Templated Knoevenagel Reactions. Angewandte Chemie - International Edition, 2021, 60, 13294-13301.	13.8	9
24	Discovery of novel furo [2,3â€∢i>d) pyrimidinâ€2â€one–1,3,4â€oxadiazole hybrid derivatives as dual antivira and anticancer agents that induce apoptosis. Archiv Der Pharmazie, 2021, 354, e2100146.	4.1	19
25	A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents. Antiviral Research, 2021, 192, 105122.	4.1	47
26	Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antiviral Research, 2021, 193, 105142.	4.1	19
27	Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Research, 2021, 193, 105127.	4.1	27
28	1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. European Journal of Medicinal Chemistry, 2021, 221, 113494.	5.5	15
29	The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine, 2021, 72, 103595.	6.1	91
30	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	12.4	41
31	Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption ionization mass spectrometry. Antiviral Research, 2020, 182, 104924.	4.1	33
32	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, $11,5838$.	12.8	225
33	Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorganic and Medicinal Chemistry, 2020, 28, 115401.	3.0	4
34	Regioselective convergent synthesis of 2-arylidene thiazolo $[3,2-\langle i\rangle a\langle i\rangle]$ pyrimidines as potential anti-chikungunya agents. RSC Advances, 2020, 10, 5191-5195.	3.6	5
35	New HSV-1 Anti-Viral 1′-Homocarbocyclic Nucleoside Analogs with an Optically Active Substituted Bicyclo[2.2.1]Heptane Fragment as a Glycoside Moiety. Molecules, 2019, 24, 2446.	3.8	9
36	Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. Journal of Experimental Medicine, 2019, 216, 2057-2070.	8.5	127

#	Article	IF	Citations
37	A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. PLoS Biology, 2019, 17, e3000281.	5.6	36
38	Progress in human picornavirus research: New findings from the AIROPico consortium. Antiviral Research, 2019, 161, 100-107.	4.1	3
39	Pyrimethamine inhibits rabies virus replication in vitro. Antiviral Research, 2019, 161, 1-9.	4.1	15
40	Mannitol treatment is not effective in therapy of rabies virus infection in mice. Vaccine, 2019, 37, 4710-4714.	3.8	7
41	The path towards effective antivirals against rabies. Vaccine, 2019, 37, 4660-4662.	3.8	9
42	Inhibition of the Replication of Different Strains of Chikungunya Virus by 3-Aryl-[1,2,3]triazolo[4,5- <i>d</i>)pyrimidin-7(6 <i>H</i>)-ones. ACS Infectious Diseases, 2018, 4, 605-619.	3.8	18
43	Differential antiviral activities of respiratory syncytial virus (RSV) inhibitors in human airway epithelium. Journal of Antimicrobial Chemotherapy, 2018, 73, 1823-1829.	3.0	18
44	Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection. Antiviral Research, 2018, 149, 113-117.	4.1	30
45	A novel kindred with inherited STAT2 deficiency and severe viral illness. Journal of Allergy and Clinical Immunology, 2017, 139, 1995-1997.e9.	2.9	71
46	Antiviral activity of [1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Research, 2017, 144, 216-222.	4.1	44
47	Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochemical Pharmacology, 2017, 127, 1-12.	4.4	66
48	Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses <i>In Vitro</i> and against Human Metapneumovirus in Hamsters. Antimicrobial Agents and Chemotherapy, 2016, 60, 4620-4629.	3.2	39
49	Bicyclic and Tricyclic "Expanded―Nucleobase Analogues of Sofosbuvir: New Scaffolds for Hepatitis C Therapies. ACS Infectious Diseases, 2015, 1, 357-366.	3.8	12
50	Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2923-2926.	2.2	70
51	Prophylactic treatment with the nucleoside analogue 2'-C-methylcytidine completely prevents transmission of norovirus. Journal of Antimicrobial Chemotherapy, 2015, 70, 190-197.	3.0	31
52	Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrobial Agents and Chemotherapy, 2014, 58, 4875-4884.	3.2	611
53	Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. Journal of Antimicrobial Chemotherapy, 2014, 69, 2770-2784.	3.0	187
54	Norovirus: Targets and tools in antiviral drug discovery. Biochemical Pharmacology, 2014, 91, 1-11.	4.4	49

#	Article	IF	CITATIONS
55	Rapid and convenient assays to assess potential inhibitory activity on in vitro hepatitis A replication. Antiviral Research, 2013, 98, 325-331.	4.1	12
56	Intervention strategies for emerging viruses: use of antivirals. Current Opinion in Virology, 2013, 3, 217-224.	5.4	37
57	The Viral Polymerase Inhibitor 2′- <i>C</i> -Methylcytidine Inhibits Norwalk Virus Replication and Protects against Norovirus-Induced Diarrhea and Mortality in a Mouse Model. Journal of Virology, 2013, 87, 11798-11805.	3.4	85
58	Formation of a Quaternary Complex of HIV-1 Reverse Transcriptase with a Nucleotide-competing Inhibitor and Its ATP Enhancer. Journal of Biological Chemistry, 2013, 288, 17336-17346.	3.4	12
59	Identification of HIV-1 Reverse Transcriptase Inhibitors Using a Scintillation Proximity Assay. Methods in Molecular Biology, 2013, 1030, 19-24.	0.9	1
60	Favipiravir (T-705) inhibits in vitro norovirus replication. Biochemical and Biophysical Research Communications, 2012, 424, 777-780.	2.1	122
61	Inhibition of norovirus replication by the nucleoside analogue $2\hat{a}\in ^2$ -C-methylcytidine. Biochemical and Biophysical Research Communications, 2012, 427, 796-800.	2.1	59
62	A novel high-throughput cellular screening assay for the discovery of HIV-1 integrase inhibitors. Journal of Virological Methods, 2012, 179, 396-401.	2.1	4
63	A novel method for high-throughput screening to quantify antiviral activity against viruses that induce limited CPE. Journal of Virological Methods, 2012, 183, 176-179.	2.1	30
64	MAPPIT as a High-Throughput Screening Assay for Modulators of Protein–Protein Interactions in HIV and HCV. Methods in Molecular Biology, 2012, 812, 295-307.	0.9	5
65	Difluoromethylbenzoxazole Pyrimidine Thioether Derivatives: A Novel Class of Potent Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 7974-7985.	6.4	84
66	Patients with Discordant Responses to Antiretroviral Therapy Have Impaired Killing of HIV-Infected T Cells. PLoS Pathogens, 2010, 6, e1001213.	4.7	21
67	Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease. Retrovirology, 2010, 7, 89.	2.0	26
68	TMC278, a Next-Generation Nonnucleoside Reverse Transcriptase Inhibitor (NNRTI), Active against Wild-Type and NNRTI-Resistant HIV-1. Antimicrobial Agents and Chemotherapy, 2010, 54, 718-727.	3.2	263
69	MAPPIT (MAmmalian Protein–Protein Interaction Trap) as a tool to study HIV reverse transcriptase dimerization in intact human cells. Journal of Virological Methods, 2008, 153, 7-15.	2.1	18
70	Novel HIV-1 reverse transcriptase inhibitors. Virus Research, 2008, 134, 171-185.	2.2	108
71	Resistance Mutations in Human Immunodeficiency Virus Type 1 Integrase Selected with Elvitegravir Confer Reduced Susceptibility to a Wide Range of Integrase Inhibitors. Journal of Virology, 2008, 82, 10366-10374.	3.4	153
72	Mutations M184V and Y115F in HIV-1 Reverse Transcriptase Discriminate against "Nucleotide-competing Reverse Transcriptase Inhibitors― Journal of Biological Chemistry, 2008, 283, 29904-29911.	3.4	43

#	Article	IF	CITATIONS
73	Inhibition of Human Immunodeficiency Virus Type 1 Replication in Human Cells by Debio-025, a Novel Cyclophilin Binding Agent. Antimicrobial Agents and Chemotherapy, 2008, 52, 1302-1317.	3.2	106
74	Indolopyridones Inhibit Human Immunodeficiency Virus Reverse Transcriptase with a Novel Mechanism of Action. Journal of Virology, 2006, 80, 12283-12292.	3.4	95
75	TMC114, a Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor Active against Protease Inhibitor-Resistant Viruses, Including a Broad Range of Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2005, 49, 2314-2321.	3.2	351
76	TMC125 Displays a High Genetic Barrier to the Development of Resistance: Evidence from In Vitro Selection Experiments. Journal of Virology, 2005, 79, 12773-12782.	3.4	238
77	Human Immunodeficiency Virus Type 1 Non-Nucleoside Reverse Transcriptase Inhibitors., 0,, 33-50.		2
78	Itraconazole for COVID-19: Preclinical Studies and a Proof-of-Concept Pilot Clinical Study. SSRN Electronic Journal, 0 , , .	0.4	1