Mohammad Hasan Abu Mhareb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6828679/publications.pdf

Version: 2024-02-01

74 papers 2,476 citations

147801 31 h-index 223800 46 g-index

74 all docs

74 docs citations

74 times ranked 893 citing authors

#	Article	IF	Citations
1	Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceramics International, 2020, 46, 12718-12726.	4.8	113
2	Optical and radiation shielding features for a new series of borate glass samples. Optik, 2021, 239, 166790.	2.9	101
3	Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass. Optical Materials, 2014, 37, 391-397.	3.6	97
4	Physical and optical properties of Dy3+: Li2O–K2O–B2O3 glasses. Journal of Molecular Structure, 2014, 1076, 20-25.	3.6	96
5	Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceramics International, 2020, 46, 28877-28886.	4.8	96
6	Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. Journal of Luminescence, 2016, 177, 366-372.	3.1	81
7	Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	71
8	Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. Journal of Non-Crystalline Solids, 2020, 550, 120360.	3.1	66
9	Physical, structural, optical, and radiation shielding properties of B2O3- 20Bi2O3- 20Na2O2- Sb2O3 glasses: Role of Sb2O3. Journal of Non-Crystalline Solids, 2020, 543, 120130.	3.1	64
10	Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nuclear Engineering and Technology, 2021, 53, 949-959.	2.3	61
11	The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. Journal of Non-Crystalline Solids, 2020, 541, 120090.	3.1	60
12	Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiation Physics and Chemistry, 2020, 168, 108537.	2.8	59
13	Physical, structural, optical and photons attenuation attributes of lithium-magnesium-borate glasses: Role of Tm2O3 doping. Optik, 2019, 182, 821-831.	2.9	57
14	Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications. Journal of Non-Crystalline Solids, 2020, 545, 120250.	3.1	55
15	Novel tellurite glass (60-x)TeO2–10GeO2 -20ZnO–10BaO - xBi2O3 for radiation shielding. Journal of Alloys and Compounds, 2020, 844, 155668.	5.5	52
16	A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chemical Physics, 2019, 523, 92-98.	1.9	51
17	Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system. Journal of Non-Crystalline Solids, 2020, 546, 120272.	3.1	50
18	lonizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide. Materials Chemistry and Physics, 2021, 272, 125047.	4.0	50

#	Article	IF	CITATIONS
19	A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations. Journal of Alloys and Compounds, 2021, 858, 157636.	5.5	49
20	Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions. Journal of Molecular Structure, 2014, 1075, 113-117.	3.6	47
21	Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach. Journal of Materials Research and Technology, 2022, 18, 1017-1027.	5.8	41
22	Radiation shielding features for various tellurium-based alloys: a comparative study. Journal of Materials Science: Materials in Electronics, 2021, 32, 26798-26811.	2.2	40
23	Borate multicomponent of bismuth rich glasses for gamma radiation shielding application. Radiation Physics and Chemistry, 2019, 161, 77-82.	2.8	39
24	Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides. Applied Radiation and Isotopes, 2014, 91, 126-130.	1.5	38
25	Theoretical and experimental validation gamma shielding properties of B2O3–ZnO–MgO–Bi2O3 glass system. Materials Chemistry and Physics, 2020, 242, 122504.	4.0	36
26	Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO). Applied Sciences (Switzerland), 2021, 11, 10904.	2.5	36
27	Structural, optical, and shielding investigations of TeO2–GeO2–ZnO–Li2O–Bi2O3 glass system for radiation protection applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	35
28	MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications. Radiation Physics and Chemistry, 2020, 172, 108852.	2.8	35
29	Radiation shielding properties of Nd0.6Sr0.4Mn1â^'yNiyO3 substitute with different concentrations of nickle. Radiation Physics and Chemistry, 2020, 174, 108920.	2.8	35
30	Physical, structural, and shielding properties of cadmium bismuth borate-based glasses. Journal of Applied Physics, 2020, 127, .	2.5	34
31	Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications. European Physical Journal Plus, 2021, 136, 1.	2.6	34
32	Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik, 2015, 126, 3638-3643.	2.9	32
33	Luminescence features of dysprosium and phosphorus oxide co-doped lithium magnesium borate glass. Radiation Physics and Chemistry, 2017, 137, 45-48.	2.8	31
34	Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 20867-20881.	2.2	31
35	Physical and optical properties of Li2O–MgO–B2O3 doped with Sm3+. Journal of Molecular Structure, 2014, 1060, 6-10.	3.6	30
36	Bi2O3-B2O3-ZnO-BaO-Li2O glass system for gamma ray shielding applications. Optik, 2020, 201, 163525.	2.9	28

#	Article	IF	Citations
37	Physical and optical properties of Li2O-MgO-B2O3 doped with Dy3+. Optics and Spectroscopy (English) Tj ETQq1	1.0.78431	.4.rgBT /Ove
38	Luminescence characteristics of Li2O–MgO–B2O3 doped with Dy3+ as a solid TL detector. Radiation Physics and Chemistry, 2015, 116, 138-141.	2.8	27
39	Physical and spectroscopic characteristics of lithium-aluminium-borate glass: Effects of varying Nd2O3 doping contents. Journal of Non-Crystalline Solids, 2022, 575, 121214.	3.1	26
40	Assessment of radiation attenuation properties for novel alloys: An experimental approach. Radiation Physics and Chemistry, 2022, 200, 110152.	2.8	26
41	Influences of dysprosium and phosphorous oxides co-doping on thermoluminescence features and kinetic parameters of lithium magnesium borate glass. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 469-477.	1.5	25
42	Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide. Luminescence, 2015, 30, 1330-1335.	2.9	23
43	Impact of Eu3+ Ions on Physical and Optical Properties of Li2O-Na2O-B2O3 Glass. Chinese Journal of Chemical Physics, 2016, 29, 395-400.	1.3	23
44	Assessment of radiological health implicat from ambient environment in the Muar district, Johor, Malaysia. Radiation Physics and Chemistry, 2014, 103, 243-252.	2.8	22
45	Impact of Dy2O3 Substitution on the Physical, Structural and Optical Properties of Lithium–Aluminium–Borate Glass System. Applied Sciences (Switzerland), 2020, 10, 8183.	2.5	22
46	Durability, optical and radiation shielding properties for new series of boro-tellurite glass. Optik, 2021, 245, 167667.	2.9	21
47	Effects of TiO2, V2O5, MnO2 and Tl2O3 on structural, physical, optical and ionizing radiation shielding properties of strontium boro-tellurite glass: An experimental study. Optical Materials, 2022, 127, 112350.	3.6	19
48	Gamma radiation shielding and structural features for barium strontium boro-tellurite glass modified with various concentrations of molybdenum oxide. Journal of Non-Crystalline Solids, 2021, 559, 120658.	3.1	18
49	The role of different modifiers on radiation shielding, optical, and physical properties for strontium boro-tellurite glass. Ceramics International, 2022, 48, 15984-15991.	4.8	18
50	Copper doped borate dosimeters revisited. Journal of Luminescence, 2014, 155, 141-148.	3.1	17
51	Structural and radiation shielding features for a new series of borate glass samples: part I. European Physical Journal Plus, 2021, 136, 1.	2.6	17
52	The impact of TeO2 on physical, structural, optical and radiation shielding features for borate glass samples. Optik, 2021, 247, 167924.	2.9	17
53	A new heavy-mineral doped clay brick for gamma-ray protection purposes. Applied Radiation and Isotopes, 2021, 173, 109720.	1.5	15
54	Physical and optical properties of sodium borate glasses doped with Dy3+ ions. International Journal of Modern Physics B, 2017, 31, 1750171.	2.0	14

#	Article	IF	Citations
55	Structural, optical, and radiation shielding features for a series of borate glassy system modified by molybdenum oxide. European Physical Journal Plus, 2021, 136, 1.	2.6	14
56	Estimation of radiation cancer risk in CT-KUB. Radiation Physics and Chemistry, 2017, 137, 130-134.	2.8	13
57	Effect of co-doping of lithium on the dosimetric properties of dysprosium-doped sodium borate glass system. Physica B: Condensed Matter, 2019, 558, 142-145.	2.7	12
58	Radiation shielding features for a new glass system based on tellurite oxide. Radiation Physics and Chemistry, 2022, 200, 110094.	2.8	12
59	Glow curve analysis of glassy system dosimeter subjected to photon and electron irradiations. Results in Physics, 2018, 10, 772-776.	4.1	11
60	Structural, optical and radiation shielding properties of Zirconium–Titanium–Thallium Ternary Oxide (0.5ZrO2-(0.5-x)TiO2-xTl2O3). Ceramics International, 2021, 47, 21837-21847.	4.8	11
61	Novel efficient alloys for ionizing radiation shielding applications: A theoretical investigation. Radiation Physics and Chemistry, 2022, 200, 110181.	2.8	11
62	Radiation shielding and structural features for different perovskites doped YBa2Cu3Oy composites. Ceramics International, 2022, 48, 18855-18865.	4.8	10
63	Effect of different modifiers on mechanical and radiation shielding properties of SrO-B2O3-TeO2 glass system. Optik, 2022, 257, 168823.	2.9	10
64	The effectiveness of bismuth breast shielding with protocol optimization in CT Thorax examination. Journal of X-Ray Science and Technology, 2019, 27, 139-147.	1.0	9
65	Fabrication, characterization of neutron and proton shielding investigation of tungsten oxide dispersed-ultra high Mw polyethylene. Chemical Physics, 2021, 548, 111227.	1.9	9
66	Structural and radiation shielding features for BaSn1-xZnxO3 perovskite. Physica B: Condensed Matter, 2022, 638, 413925.	2.7	9
67	Photoluminescence and thermoluminescence properties of Li ₂ Oâ€Na ₂ Oâ€Sacsub>2Ocsub>3 glass. Luminescence, 2016, 31, 754-75	59 ^{2.9}	7
68	Physical, structural, optical and gammaâ€ray shielding properties of Na ₂ OကdOâ€Bi ₂ Osub>3â€B ₂ O ₃ Biasses. International Journal of Applied Glass Science, 2021, 12, 259-273.	2.0	7
69	Investigation of Gammaâ€Radiation Shielding Properties of Cadmium Bismuth Borate Glass Experimentally and by Using XCOM Program and MCNP5 Code. Physica Status Solidi (B): Basic Research, 2021, 258, 2000417.	1.5	6
70	Natural environmental radioactivity and the corresponding health risk in Johor Bahru District, Johor, Malaysia. Journal of Radioanalytical and Nuclear Chemistry, 2014, 303, 1753.	1.5	5
71	Structural, magnetic and gamma-ray shielding features of Zn doped Mg2FeTiO6 double perovskite. Physica B: Condensed Matter, 2022, 640, 414024.	2.7	5
72	Dosimetric features and kinetic parameters of a glass system dosimeter. Luminescence, 2020, 35, 525-533.	2.9	3

#	Article	IF	CITATIONS
73	Structural and optical properties of lithium sodium borate glasses doped with Sm ³⁺ ions. International Journal of Modern Physics B, 2014, 28, 1450182.	2.0	2
74	The effect of europium oxide impurity on the optical and physical properties of lithium potassium borate glass. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 56-60.	0.6	2