Jordi Bort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6828329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crop phenotyping in a context of global change: What to measure and how to do it. Journal of Integrative Plant Biology, 2022, 64, 592-618.	4.1	29
2	Effect of irrigation salinity and ecotype on the growth, physiological indicators and seed yield and quality of Salicornia europaea. Plant Science, 2021, 304, 110819.	1.7	20
3	Use of RGB Vegetation Indexes in Assessing Early Effects of Verticillium Wilt of Olive in Asymptomatic Plants in High and Low Fertility Scenarios. Remote Sensing, 2019, 11, 607.	1.8	17
4	The Hydrogen Isotope Composition δ ² H Reflects Plant Performance. Plant Physiology, 2019, 180, 793-812.	2.3	41
5	Identification of traits associated with barley yield performance using contrasting nitrogen fertilizations and genotypes. Plant Science, 2019, 282, 83-94.	1.7	7
6	Assessment of heavy metal tolerance in two plant species growing in experimental disturbed polluted urban soil. Journal of Soils and Sediments, 2018, 18, 2305-2317.	1.5	31
7	Challenges and Bottlenecks in VAV Phenotyping. , 2018, , .		1
8	Post-green revolution genetic advance in durum wheat: The case of Spain. Field Crops Research, 2018, 228, 158-169.	2.3	49
9	Durum wheat ears perform better than the flag leaves under water stress: Gene expression and physiological evidence. Environmental and Experimental Botany, 2018, 153, 271-285.	2.0	52
10	Agronomic and physiological responses of Chinese facultative wheat genotypes to high-yielding Mediterranean conditions. Journal of Agricultural Science, 2016, 154, 870-889.	0.6	10
11	The combined use of vegetation indices and stable isotopes to predict durum wheat grain yield under contrasting water conditions. Agricultural Water Management, 2015, 158, 196-208.	2.4	39
12	Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Computers and Electronics in Agriculture, 2015, 116, 20-29.	3.7	44
13	Comparative performance of the stable isotope signatures of carbon, nitrogen and oxygen in assessing early vigour and grain yield in durum wheat. Journal of Agricultural Science, 2014, 152, 408-426.	0.6	19
14	Physiological traits contributed to the recent increase in yield potential of winter wheat from Henan Province, China. Journal of Integrative Plant Biology, 2014, 56, 492-504.	4.1	46
15	Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon isotope signature: Genotypic and growing conditions effects. Journal of Integrative Plant Biology, 2014, 56, 444-454.	4.1	90
16	Molecular and physiological mechanisms associated with root exposure to mercury in barley. Metallomics, 2013, 5, 1305.	1.0	22
17	Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Functional Plant Biology, 2013, 40, 595.	1.1	88
18	Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiologiae Plantarum, 2012, 34, 1217-1228.	1.0	42

Jordi Bort

#	Article	IF	CITATIONS
19	Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis. Cell Biology and Toxicology, 2012, 28, 57-68.	2.4	58
20	Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theoretical and Applied Genetics, 2011, 122, 1363-1373.	1.8	75
21	NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Research Communications, 2011, 39, 147-159.	0.8	147
22	Physiological responses of Eichhornia crassipes [Mart.] Solms to the combined exposure to excess nutrients and Hg. Brazilian Journal of Plant Physiology, 2009, 21, 1-12.	0.5	12
23	Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theoretical and Applied Genetics, 2009, 119, 175-187.	1.8	99
24	Mapping adaptation of barley to droughted environments. Euphytica, 2008, 161, 35-45.	0.6	44
25	Barley adaptation and improvement in the Mediterranean basin. Plant Breeding, 2008, 127, 554-560.	1.0	40
26	Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat (<i>Triticum durum</i> Desf.) Across a Wide Range of Water Availability. Genetics, 2008, 178, 489-511.	1.2	397
27	The Photosynthetic Role of Ears in C3 Cereals: Metabolism, Water Use Efficiency and Contribution to Grain Yield. Critical Reviews in Plant Sciences, 2007, 26, 1-16.	2.7	196
28	Relationships of grain ?13C and ?18O with wheat phenology and yield under water-limited conditions. Annals of Applied Biology, 2007, 150, 207-215.	1.3	61
29	Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Annals of Applied Biology, 2007, 150, 227-236.	1.3	150
30	Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index?. Annals of Applied Biology, 2007, 150, 253-257.	1.3	164
31	Water use efficiency in C3cereals under Mediterranean conditions: a review of physiological aspects. Annals of Applied Biology, 2007, 150, 307-321.	1.3	192
32	The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ ¹³ C in durum wheat potted plants. Annals of Applied Biology, 2007, 151, 277-289.	1.3	116
33	A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 79-85.	0.4	54
34	Detection and Quantification of Unbound Phytochelatin 2 in Plant Extracts of Brassica napus Grown with Different Levels of Mercury. Plant Physiology, 2006, 142, 742-749.	2.3	59
35	Water management practices and climate in ancient agriculture: inferences from the stable isotope composition of archaeobotanical remains. Vegetation History and Archaeobotany, 2005, 14, 510-517.	1.0	185
36	Factors affecting the grain yield predicting attributes of spectral reflectance indices in durum wheat: growing conditions, genotype variability and date of measurement. International Journal of Remote Sensing, 2005, 26, 2337-2358.	1.3	39

Jordi Bort

#	Article	IF	CITATIONS
37	Comparison of flag leaf and ear photosynthesis with biomass and grain yield of durum wheat under various water conditions and genotypes. Agronomy for Sustainable Development, 2004, 24, 19-28.	0.8	87
38	Relationships between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiology and Biochemistry, 1998, 36, 889-897.	2.8	36
39	Refixation of respiratory CO2in the ears of C3cereals. Journal of Experimental Botany, 1996, 47, 1567-1575.	2.4	73
40	Lack of C4 photosynthetic metabolism in ears of C3 cereals. Plant, Cell and Environment, 1995, 18, 697-702.	2.8	24
41	Role of awns in ear water-use efficiency and grain weight in barley. Agronomy for Sustainable Development, 1994, 14, 133-139.	0.8	59
42	Immunocytochemical localization of phosphoenolpyruvate carboxylase and photosynthetic gas-exchange characteristics in ears of Triticum durum Desf Planta, 1993, 191, 507.	1.6	36