Raymond J J Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6827876/publications.pdf

Version: 2024-02-01

238 papers

13,246 citations

28274 55 h-index 28297 105 g-index

251 all docs

251 docs citations

251 times ranked

14532 citing authors

#	Article	IF	CITATIONS
1	Synergism inhibition and eradication activity of silver nitrate/potassium tellurite combination against <i>Pseudomonas aeruginosa</i> biofilm. Journal of Antimicrobial Chemotherapy, 2022, , .	3.0	4
2	Antimicrobial activity of supramolecular salts of gallium(III) and proflavine and the intriguing case of a trioxalate complex. Scientific Reports, 2022, 12, 3673.	3.3	7
3	Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions. Applied and Environmental Microbiology, 2022, 88, e0220921.	3.1	2
4	Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria?. Biological Research, 2022, 55, 17.	3.4	14
5	Using a chemical genetic screen to enhance our understanding of the antimicrobial properties of copper. Metallomics, 2022, 14, .	2.4	4
6	Effectiveness of COVID-19 Vaccines against Delta (B.1.617.2) Variant: A Systematic Review and Meta-Analysis of Clinical Studies. Vaccines, 2022, 10, 23.	4.4	37
7	Bacterial Production of Metal(loid) Nanostructures. Advances in Environmental Microbiology, 2022, , 167-194.	0.3	2
8	Assessing Microbial Monitoring Methods for Challenging Environmental Strains and Cultures. Microbiology Research, 2022, 13, 235-257.	1.9	6
9	Enhanced Exoelectrogenic Activity of Cupriavidus metallidurans in Bioelectrochemical Systems through the Expression of a Constitutively Active Diguanylate Cyclase. Environments - MDPl, 2022, 9, 80.	3.3	1
10	Comparison of influenza type A and B with COVIDâ€19: A global systematic review and metaâ€analysis on clinical, laboratory and radiographic findings. Reviews in Medical Virology, 2021, 31, e2179.	8.3	81
11	Biomolecular composition of capping layer and stability of biogenic selenium nanoparticles synthesized by five bacterial species. Microbial Biotechnology, 2021, 14, 198-212.	4.2	26
12	Creation of Universal Primers Targeting Nonconserved, Horizontally Mobile Genes: Lessons and Considerations. Applied and Environmental Microbiology, 2021, 87, .	3.1	2
13	Proflavine and zinc chloride "team chemistry― combining antibacterial agents via solid-state interaction. CrystEngComm, 2021, 23, 4494-4499.	2.6	9
14	Nanomaterials in Wound Healing and Infection Control. Antibiotics, 2021, 10, 473.	3.7	63
15	Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Vaccines, 2021, 9, 467.	4.4	228
16	Se nanoparticle manufacturing for medical applications. , 2021, , 287-322.		0
17	Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SelTE01. Frontiers in Microbiology, 2021, 12, 711000.	3.5	6
18	Detection of naphthenic acid uptake into root and shoot tissues indicates a direct role for plants in the remediation of oil sands process-affected water. Science of the Total Environment, 2021, 795, 148857.	8.0	5

#	Article	IF	CITATIONS
19	Editorial: Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. Frontiers in Microbiology, 2021, 12, 751693.	3.5	3
20	Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis. Microbial Pathogenesis, 2020, 147, 104390.	2.9	67
21	Silver Antibacterial Synergism Activities with Eight Other Metal(loid)-Based Antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics, 2020, 9, 853.	3.7	26
22	Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology, 2020, 104, 8567-8594.	3.6	85
23	Multiple Compounds Secreted by <i>Pseudomonas aeruginosa</i> Increase the Tolerance of <i>Staphylococcus aureus</i> to the Antimicrobial Metals Copper and Silver. MSystems, 2020, 5, .	3.8	10
24	Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(loid)-Based Nanostructures. Microorganisms, 2020, 8, 2027.	3.6	31
25	Metal-Resistance in Bacteria: Why Care?. Genes, 2020, 11, 1470.	2.4	10
26	Comparison of confirmed <scp>COVID</scp> â€19 with <scp>SARS</scp> and <scp>MERS</scp> cases ― Clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and metaâ€analysis. Reviews in Medical Virology, 2020, 30, e2112.	8.3	63
27	Metal Nanoparticle–Microbe Interactions: Synthesis and Antimicrobial Effects. Particle and Particle Systems Characterization, 2020, 37, 1900419.	2.3	39
28	Co-crystallization of antibacterials with inorganic salts: paving the way to activity enhancement. RSC Advances, 2020, 10, 2146-2149.	3.6	18
29	Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis. Nanophotonics, 2020, 9, 3615-3628.	6.0	16
30	Zinc and SARSâ€'CoVâ€'2: A molecular modelingÂstudy of Zn interactions with RNAâ€'dependentÂRNAâ€'polymer and 3Câ€'like proteinase enzymes. International Journal of Molecular Medicine, 2020, 47, 326-334.	ase 4.0	38
31	Influence of Bacterial Physiology on Processing of Selenite, Biogenesis of Nanomaterials and Their Thermodynamic Stability. Molecules, 2019, 24, 2532.	3.8	23
32	The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase. Frontiers in Microbiology, 2019, 10, 1499.	3.5	22
33	Biofilms and Microbiologically Influenced Corrosion in the Petroleum Industry. ACS Symposium Series, 2019, , 187-203.	0.5	5
34	Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1. Frontiers in Microbiology, 2019, 10, 888.	3.5	38
35	Specificity in the Susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus Clinical Isolates to Six Metal Antimicrobials. Antibiotics, 2019, 8, 51.	3.7	23
36	Mesoporous Silicaâ€Based Materials with Bactericidal Properties. Small, 2019, 15, e1900669.	10.0	125

#	Article	IF	CITATIONS
37	Tellurite-dependent blackening of bacteria emerges from the dark ages. Environmental Chemistry, 2019, 16, 266.	1.5	41
38	Interaction of Rhodococcus with Metals and Biotechnological Applications. Microbiology Monographs, 2019, , 333-357.	0.6	11
39	Principal component analysis of the relationship between pelvic inclination and lumbar lordosis. Scoliosis and Spinal Disorders, 2019, 14, 1.	2.3	2
40	Using a Chemical Genetic Screen to Enhance Our Understanding of the Antimicrobial Properties of Gallium against Escherichia coli. Genes, 2019, 10, 34.	2.4	16
41	Prevalence of Multidrug Resistance Efflux Pumps (MDREPs) in Environmental Communities. , 2019, , 545-557.		5
42	Phylogenetic characterization of the energy taxis receptor Aer in Pseudomonas and phenotypic characterization in Pseudomonas pseudoalcaligenes KF707. Microbiology (United Kingdom), 2019, 165, 1331-1344.	1.8	1
43	Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of <i>Escherichia coli</i> cells. Molecular Microbiology, 2018, 107, 623-638.	2.5	26
44	The Potential of Metals in Combating Bacterial Pathogens., 2018,, 129-150.		4
45	Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Critical Reviews in Biotechnology, 2018, 38, 1137-1156.	9.0	54
46	Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Scientific Reports, 2018, 8, 3923.	3.3	47
47	Selenium and tellurium nanomaterials. ChemistrySelect, 2018, 3, .	1.5	18
48	Influence of quaternary cation compound on the size of the Escherichia coli small multidrug resistance protein, EmrE. Biochemistry and Biophysics Reports, 2018, 13, 129-140.	1.3	1
49	Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnology, 2018, 41, 1-8.	4.4	79
50	Is Silver the Ultimate Antimicrobial Bullet?. Antibiotics, 2018, 7, 112.	3.7	9
51	Physical–Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1. Frontiers in Microbiology, 2018, 9, 3178.	3.5	37
52	Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources. Frontiers in Microbiology, 2018, 9, 672.	3.5	40
53	Fluorescent Protein Visualization Immediately After Gel Electrophoresis Using an In-Gel Trichloroethanol Photoreaction with Tryptophan. Methods in Molecular Biology, 2018, 1853, 179-190.	0.9	10
54	Using a Chemical Genetic Screen to Enhance Our Understanding of the Antibacterial Properties of Silver. Genes, 2018, 9, 344.	2.4	33

#	Article	IF	Citations
55	Few Conserved Amino Acids in the Small Multidrug Resistance Transporter EmrE Influence Drug Polyselectivity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	22
56	Some facts about the respiratory enzymes of Pseudomonas pseudoalcaligenes KF707 recently renamed as Pseudomonas furukawaii sp. nov., type strain KF707. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3066-3067.	1.7	1
57	6. Selenium and tellurium nanomaterials. , 2018, , 313-338.		О
58	Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITEO2: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. Journal of Hazardous Materials, 2017, 324, 3-14.	12.4	135
59	Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors. Bioresource Technology, 2017, 228, 116-124.	9.6	18
60	Antimicrobial activity of biogenically produced spherical Seâ€nanomaterials embedded in organic material against <i>Pseudomonas aeruginosa</i> andÂ <i>Staphylococcus aureus</i> strains on hydroxyapatiteâ€coated surfaces. Microbial Biotechnology, 2017, 10, 804-818.	4.2	67
61	The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. Journal of Antibiotics, 2017, 70, 775-780.	2.0	48
62	Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Research in Microbiology, 2017, 168, 208-221.	2.1	62
63	Silver oxynitrate – an efficacious compound for the prevention and eradication of dual-species biofilms. Biofouling, 2017, 33, 460-469.	2.2	29
64	Biogenic SeNPs from Bacillus mycoides SelTEO1 and Stenotrophomonas maltophilia SelTEO2: Characterization with reference to their associated organic coating. AIP Conference Proceedings, 2017, , .	0.4	3
65	Metalâ€based antimicrobial strategies. Microbial Biotechnology, 2017, 10, 1062-1065.	4.2	153
66	Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast. Journal of Proteome Research, 2017, 16, 3741-3752.	3.7	5
67	Relationship between craniocervical orientation and center of force of occlusion in adults. Cranio - Journal of Craniomandibular Practice, 2017, 35, 283-289.	1.4	13
68	Assembly pathway of a bacterial complex iron sulfur molybdoenzyme. Biomolecular Concepts, 2017, 8, 155-167.	2.2	7
69	Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707. Frontiers in Microbiology, 2017, 8, 1223.	3.5	7
70	The Role of <i>cheA</i> Genes in Swarming and Swimming Motility of <i>Pseudomonas pseudoalcaligenes</i> KF707. Microbes and Environments, 2016, 31, 169-172.	1.6	16
71	Small Multidrug Resistance Efflux Pumps. , 2016, , 45-71.		10
72	Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microbial Cell Factories, 2016, 15, 204.	4.0	50

#	Article	IF	Citations
73	A comparison of the response of two <i>Burkholderia fungorum</i> strains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 2016, 62, 851-860.	1.7	6
74	On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. Journal of Inorganic Biochemistry, 2016, 163, 103-109.	3.5	10
75	Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresource Technology, 2016, 216, 352-361.	9.6	90
76	Identification of protein–protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 767-775.	2.6	9
77	Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water. PLoS ONE, 2016, 11, e0148682.	2.5	9
78	Biofilm Survival Strategies in Polluted Environments. , 2016, , 43-56.		2
79	Protocols for Harvesting a Microbial Community Directly as a Biofilm for the Remediation of Oil Sands Process Water. Springer Protocols, 2015, , 131-152.	0.3	2
80	Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Frontiers in Microbiology, 2015, 6, 393.	3.5	60
81	Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Frontiers in Microbiology, 2015, 6, 827.	3.5	56
82	Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Frontiers in Microbiology, 2015, 6, 936.	3.5	32
83	Selenite Protection of Tellurite Toxicity Toward Escherichia coli. Frontiers in Molecular Biosciences, 2015, 2, 69.	3.5	23
84	Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation. Advances in Experimental Medicine and Biology, 2015, 883, 215-234.	1.6	0
85	Thermodynamic Characterization of the DmsD Binding Site for the DmsA Twin-Arginine Motif. Biochemistry, 2015, 54, 2040-2051.	2.5	6
86	Respiration and ecological niche influence bacterial membrane lipid compositions. Environmental Microbiology, 2015, 17, 1777-1793.	3.8	3
87	Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in Microbiology, 2015, 6, 584.	3.5	189
88	Structural and functional comparison of hexahistidine tagged and untagged forms of small multidrug resistance protein, EmrE. Biochemistry and Biophysics Reports, 2015, 1, 22-32.	1.3	7
89	Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy. Nature Communications, 2015, 6, 6826.	12.8	30
90	Silver Oxynitrate, an Unexplored Silver Compound with Antimicrobial and Antibiofilm Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 4031-4039.	3.2	54

#	Article	IF	Citations
91	NarJ subfamily system specific chaperone diversity and evolution is directed by respiratory enzyme associations. BMC Evolutionary Biology, 2015, 15, 110.	3.2	13
92	Cultivation of Environmental Bacterial Communities as Multispecies Biofilms. Springer Protocols, 2015, , 249-268.	0.3	3
93	Influence of GTP on system specific chaperone – Twin arginine signal peptide interaction. Biochemical and Biophysical Research Communications, 2015, 465, 753-757.	2.1	5
94	Unusual pairing between assistants: Interaction of the twin-arginine system-specific chaperone DmsD with the chaperonin GroEL. Biochemical and Biophysical Research Communications, 2015, 456, 841-846.	2.1	4
95	A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment. AIMS Bioengineering, 2015, 2, 387-403.	1.1	10
96	Excited State Photoreaction between the Indole Side Chain of Tryptophan and Halocompounds Generates New Fluorophores and Unique Modifications. Photochemistry and Photobiology, 2014, 90, 1027-1033.	2.5	13
97	Surveillance and molecular characterization of non-tuberculous mycobacteria in a hospital water distribution system over a three-year period. Journal of Hospital Infection, 2014, 87, 59-62.	2.9	16
98	Mixed-Species Biofilms Cultured from an Oil Sand Tailings Pond can Biomineralize Metals. Microbial Ecology, 2014, 68, 70-80.	2.8	32
99	Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere, 2014, 97, 78-85.	8.2	43
100	Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. Journal of Hazardous Materials, 2014, 269, 24-30.	12.4	42
101	Outer Membrane Protein OmpW Participates with Small Multidrug Resistance Protein Member EmrE in Quaternary Cationic Compound Efflux. Journal of Bacteriology, 2014, 196, 1908-1914.	2.2	46
102	â€~Come into the fold': A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2971-2984.	2.6	18
103	ldentification of Protein-Protein Interactions Between the TatB and TatC Subunits of the Twin-Arginine Translocase System and the Redox Enzyme Maturation Protein Chaperones. Biophysical Journal, 2014, 106, 669a.	0.5	0
104	Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD. The Open Biochemistry Journal, 2014, 8, 1-11.	0.5	3
105	Effect of aluminium and copper on biofilm development of Pseudomonas pseudoalcaligenes KF707 and P. fluorescens as a function of different media compositions. Metallomics, 2013, 5, 723.	2.4	25
106	Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chemistry and Physics of Lipids, 2013, 167-168, 33-42.	3.2	18
107	Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms. BMC Microbiology, 2013, 13, 175.	3.3	10
108	Analysis of Integral Membrane Inter and Intra Contacts in Model Multidrug Transporter EmrE using a Bacterial Two-Hybrid Method. Biophysical Journal, 2013, 104, 66a.	0.5	0

#	Article	IF	CITATIONS
109	Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013, 11, 371-384.	28.6	1,987
110	Membrane composition influences the topology bias of bacterial integral membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 260-270.	2.6	13
111	The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis. Research in Microbiology, 2013, 164, 46-54.	2.1	10
112	COMPUTATIONAL TOOLS FOR THE SECONDARY ANALYSIS OF METABOLOMICS EXPERIMENTS. Computational and Structural Biotechnology Journal, 2013, 4, e201301003.	4.1	62
113	The Hydrophobic Region of the DmsA Twin-Arginine Leader Peptide Determines Specificity with Chaperone DmsD. Biochemistry, 2013, 52, 7532-7541.	2.5	16
114	Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling, 2013, 29, 917-928.	2.2	124
115	Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche. PLoS ONE, 2013, 8, e78742.	2.5	23
116	Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods. Metabolites, 2013, 3, 592-605.	2.9	37
117	Small Multidrug Resistance Protein EmrE Reduces Host pH and Osmotic Tolerance to Metabolic Quaternary Cation Osmoprotectants. Journal of Bacteriology, 2012, 194, 5941-5948.	2.2	54
118	Genome Sequence of the Polychlorinated-Biphenyl Degrader Pseudomonas pseudoalcaligenes KF707. Journal of Bacteriology, 2012, 194, 4426-4427.	2.2	26
119	Microbial processing of tellurium as a tool in biotechnology. Biotechnology Advances, 2012, 30, 954-963.	11.7	116
120	Different Purification Approaches for the Integral Membrane Protein EmrE Leads to Biochemical and Biophysical Differences in the Protein. Biophysical Journal, 2012, 102, 247a.	0.5	0
121	Spectroscopic analysis of small multidrug resistance protein EmrE in the presence of various quaternary cation compounds. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1318-1331.	2.6	9
122	Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiology Ecology, 2012, 79, 240-250.	2.7	84
123	Real-time imaging of lipid domains and distinct coexisting membrane protein clusters. Chemistry and Physics of Lipids, 2012, 165, 216-224.	3.2	16
124	Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. International Journal of Antimicrobial Agents, 2011, 37, 324-331.	2.5	72
125	Differences in Metabolism between the Biofilm and Planktonic Response to Metal Stress. Journal of Proteome Research, 2011, 10, 3190-3199.	3.7	136
126	A histidine-kinase <i>cheA </i> gene of <i>Pseudomonas pseudoalcaligens </i> KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism. Biofouling, 2011, 27, 33-46.	2.2	22

#	Article	IF	CITATIONS
127	Metabolomics and its application to studying metal toxicity. Metallomics, 2011, 3, 1142.	2.4	57
128	Spectroscopic analysis of the intrinsic chromophores within small multidrug resistance protein SugE. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2233-2244.	2.6	16
129	Towards understanding the Tat translocation mechanism through structural and biophysical studies of the amphipathic region of TatA from Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2289-2296.	2.6	14
130	Analyses of both the <i>alkB</i> Gene Transcriptional Start Site and <i>alkB</i> Promoter-Inducing Properties of <i>Rhodococcus</i> sp. Strain BCP1 Grown on <i>n</i> -Alkanes. Applied and Environmental Microbiology, 2011, 77, 1619-1627.	3.1	54
131	Real-time imaging of the lateral architecture of lipids and proteins in Escherichia coli membranes. Chemistry and Physics of Lipids, 2010, 163, S45.	3.2	0
132	Enhanced translocation of recombinant proteins via the Tat pathway with chaperones in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 540-546.	5. 3	1
133	Comparing systemâ€specific chaperone interactions with their Tat dependent redox enzyme substrates. FEBS Letters, 2010, 584, 4553-4558.	2.8	16
134	DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1301-1309.	2.3	26
135	Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841. FEMS Microbiology Ecology, 2010, 71, 327-340.	2.7	97
136	Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiology Ecology, 2010, 74, 291-301.	2.7	40
137	Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nature Protocols, 2010, 5, 1236-1254.	12.0	262
138	Phenotypic and metabolic profiling of colony morphology variants evolved from <i>Pseudomonas fluorescens</i> biofilms. Environmental Microbiology, 2010, 12, 1565-1577.	3.8	53
139	Needed, new paradigms in antibiotic development. Expert Opinion on Pharmacotherapy, 2010, 11, 1233-1237.	1.8	34
140	Phenotypic diversification in vivo: Pseudomonas aeruginosa gacSâ [^] strains generate small colony variants in vivo that are distinct from in vitro variants. Microbiology (United Kingdom), 2010, 156, 3699-3709.	1.8	12
141	A Survey for Small Multidrug Resistance Protein Multimerization in the Presence of Ligand Using Sds-Page Analysis. Biophysical Journal, 2010, 98, 35a.	0.5	0
142	Multimeric forms of the small multidrug resistance protein EmrE in anionic detergent. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 526-535.	2.6	21
143	Escherichia Coli Redox Enzyme Maturation Proteins, TorD and DmsD Interact with GTP as Shown by Native Page Assays. Biophysical Journal, 2010, 98, 243a.	0.5	0
144	Structural Investigations of an Amphipathic Region of the Twin-Arginine Translocase Tata Subunit. Biophysical Journal, 2010, 98, 625a.	0.5	0

#	Article	IF	CITATIONS
145	Thermodynamic and Hydrodynamic Characterization of the Interaction Between DmsD and the DmsA Twin-Arginine Leader Peptide. Biophysical Journal, 2010, 98, 243a.	0.5	О
146	The activity of silver against <i>Escherichia coli</i> biofilm is increased by a lipopeptide biosurfactant. Canadian Journal of Microbiology, 2010, 56, 272-278.	1.7	30
147	Inorganic Polyphosphate and Energy Metabolism in Mammalian Cells. Journal of Biological Chemistry, 2010, 285, 9420-9428.	3.4	161
148	Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation. PLoS ONE, 2010, 5, e9225.	2.5	38
149	The Chromosomal Toxin Gene <i>yafQ</i> Is a Determinant of Multidrug Tolerance for <i>Escherichia coli</i> Growing in a Biofilm. Antimicrobial Agents and Chemotherapy, 2009, 53, 2253-2258.	3.2	167
150	Differential Interactions between Tat-Specific Redox Enzyme Peptides and Their Chaperones. Journal of Bacteriology, 2009, 191, 2091-2101.	2.2	35
151	Diversity and evolution of the small multidrug resistance protein family. BMC Evolutionary Biology, 2009, 9, 140.	3.2	86
152	Using synchronous fluorescence spectroscopy and principal components analysis to monitor dissolved organic matter dynamics in a glacier system. Hydrological Processes, 2009, 23, 1487-1500.	2.6	54
153	Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Applied Microbiology and Biotechnology, 2009, 83, 541-553.	3.6	225
154	The GacS–GacA two-component regulatory system of <i>Pseudomonas fluorescens</i> : a bacterial two-hybrid analysis. FEMS Microbiology Letters, 2009, 292, 50-56.	1.8	79
155	Chromosomal antioxidant genes have metal ionâ€specific roles as determinants of bacterial metal tolerance. Environmental Microbiology, 2009, 11, 2491-2509.	3.8	112
156	Structural Analysis of a Monomeric Form of the Twin-Arginine Leader Peptide Binding Chaperone Escherichia coli DmsD. Journal of Molecular Biology, 2009, 389, 124-133.	4.2	31
157	Metabolomic Investigation of the Bacterial Response to a Metal Challenge. Applied and Environmental Microbiology, 2009, 75, 719-728.	3.1	110
158	In vivo associations of <i>Escherichia coli</i> NarJ with a peptide of the first 50 residues of nitrate reductase catalytic subunit NarG. Canadian Journal of Microbiology, 2009, 55, 179-188.	1.7	13
159	<i>Pseudomonas fluorescens</i> ' view of the periodic table. Environmental Microbiology, 2008, 10, 238-250.	3.8	78
160	Pseudomonas pseudoalcaligenes KF707 upon biofilm formation on a polystyrene surface acquire a strong antibiotic resistance with minor changes in their tolerance to metal cations and metalloid oxyanions. Archives of Microbiology, 2008, 190, 29-39.	2.2	18
161	Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1814-1838.	2.6	227
162	Structural proteomics of the cell envelope of Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1697.	2.6	0

#	Article	IF	CITATIONS
163	Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against <i>Pseudomonas aeruginosa</i> i>. Antimicrobial Agents and Chemotherapy, 2008, 52, 2870-2881.	3.2	154
164	Identification of Residues in DmsD for Twin-Arginine Leader Peptide Binding, Defined through Random and Bioinformatics-Directed Mutagenesis. Biochemistry, 2008, 47, 2749-2759.	2.5	35
165	Investigating Protein–Protein Interactions by Far-Westerns. Advances in Biochemical Engineering/Biotechnology, 2008, 110, 195-214.	1.1	5
166	The Thiol:Disulfide Oxidoreductase DsbB Mediates the Oxidizing Effects of the Toxic Metalloid Tellurite (TeO 3 2â^') on the Plasma Membrane Redox System of the Facultative Phototroph Rhodobacter capsulatus. Journal of Bacteriology, 2007, 189, 851-859.	2.2	37
167	Metal Ions May Suppress or Enhance Cellular Differentiation in Candida albicans and Candida tropicalis Biofilms. Applied and Environmental Microbiology, 2007, 73, 4940-4949.	3.1	58
168	The Bacterial Response to the Chalcogen Metalloids Se and Te. Advances in Microbial Physiology, 2007, 53, 1-312.	2.4	152
169	The TatA Subunit of Escherichia coli Twin-Arginine Translocase Has an N-in Topology. Biochemistry, 2007, 46, 7396-7404.	2.5	35
170	Strong poison revisited. Journal of Inorganic Biochemistry, 2007, 101, 1891-1893.	3.5	22
171	Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 2007, 5, 928-938.	28.6	545
172	The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiology Ecology, 2007, 59, 32-46.	2.7	70
173	A subpopulation of Candida albicansand Candida tropicalisbio film cells are highly tolerant to chelating agents. FEMS Microbiology Letters, 2007, 272, 172-181.	1.8	41
174	Development of indole chemistry to label tryptophan residues in protein for determination of tryptophan surface accessibility. Protein Science, 2007, 16, 1204-1213.	7.6	17
175	Identification of Trichloroethanol Visualized Proteins from Two-Dimensional Polyacrylamide Gels by Mass Spectrometry. Analytical Chemistry, 2006, 78, 2388-2396.	6. 5	16
176	Physical nature of signal peptide binding to DmsD. Archives of Biochemistry and Biophysics, 2006, 455, 89-97.	3.0	34
177	Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. Biochemical and Biophysical Research Communications, 2006, 343, 244-251.	2.1	33
178	An evaluation ofin vitro protein–protein interaction techniques: Assessing contaminating background proteins. Proteomics, 2006, 6, 2050-2069.	2.2	52
179	Metal resistance in Candida biofilms. FEMS Microbiology Ecology, 2006, 55, 479-491.	2.7	84
180	The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the calgary biofilm device. Biological Procedures Online, 2006, 8, 194-215.	2.9	121

#	Article	IF	CITATIONS
181	Twin-arginine signal peptide attributes effective display of CD147 to filamentous phage. Applied Microbiology and Biotechnology, 2006, 69, 697-703.	3.6	17
182	Abundance and Dynamics of Dissolved Organic Carbon in Glacier Systems. Arctic, Antarctic, and Alpine Research, 2006, 38, 163-172.	1.1	66
183	Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2005, 7, 981-994.	3.8	190
184	High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiology, 2005, 5, 53.	3.3	94
185	Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms. Canadian Journal of Microbiology, 2005, 51, 671-683.	1.7	14
186	Signal peptide–chaperone interactions on the twin-arginine protein transport pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8460-8465.	7.1	84
187	Organic solvent extracted EmrE solubilized in dodecyl maltoside is monomeric and binds drug ligand. Biochemical and Biophysical Research Communications, 2005, 327, 437-445.	2.1	31
188	SMR proteins SugE and EmrE bind ligand with similar affinity and stoichiometry. Biochemical and Biophysical Research Communications, 2005, 335, 105-111.	2.1	27
189	Investigation of Ligand Binding to the Multidrug Resistance Protein EmrE by Isothermal Titration Calorimetry. Biophysical Journal, 2005, 88, 475-482.	0.5	47
190	Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology (United) Tj ETQq0 0 0 rgBT	/Oyerlock 1.8	10 Tf 50 382
191	Biofilms. American Scientist, 2005, 93, 508.	0.1	2
192	Transport of physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs by recombinantEscherichia colinucleoside-H+cotransporter (NupC) produced inXenopus laevisoocytes. Molecular Membrane Biology, 2004, 21, 1-10.	2.0	34
193	In Vivo 31 P Nuclear Magnetic Resonance Investigation of Tellurite Toxicity in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 7342-7347.	3.1	40
193 194	In Vivo 31 P Nuclear Magnetic Resonance Investigation of Tellurite Toxicity in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 7342-7347. Biofilm susceptibility to metal toxicity. Environmental Microbiology, 2004, 6, 1220-1227.	3.1	40
	and Environmental Microbiology, 2004, 70, 7342-7347.		
194	and Environmental Microbiology, 2004, 70, 7342-7347. Biofilm susceptibility to metal toxicity. Environmental Microbiology, 2004, 6, 1220-1227. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS	3.8	202
194 195	and Environmental Microbiology, 2004, 70, 7342-7347. Biofilm susceptibility to metal toxicity. Environmental Microbiology, 2004, 6, 1220-1227. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiology Letters, 2004, 235, 357-362. Visible fluorescent detection of proteins in polyacrylamide gels without staining. Analytical	3.8	202

#	Article	IF	CITATIONS
199	Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiology Letters, 2004, 235, 357-362.	1.8	23
200	A novel procedure for separating small peptides on polyacrylamide gels. International Journal of Peptide Research and Therapeutics, 2003, 10, 127-133.	0.1	6
201	Mutagenesis of SugE, a small multidrug resistance protein. Biochemical and Biophysical Research Communications, 2003, 312, 914-921.	2.1	35
202	DmsD is required for the biogenesis of DMSO reductase in Escherichia colibut not for the interaction of the DmsA signal peptide with the Tat apparatus. FEBS Letters, 2003, 534, 156-160.	2.8	76
203	Examination of EmrE conformational differences in various membrane mimetic environments. Biochemistry and Cell Biology, 2003, 81, 61-70.	2.0	18
204	The Twin-arginine Leader-binding Protein, DmsD, Interacts with the TatB and TatC Subunits of the Escherichia coli Twin-arginine Translocase. Journal of Biological Chemistry, 2003, 278, 32501-32506.	3.4	58
205	A novel procedure for separating small peptides on polyacrylamide gels. International Journal of Peptide Research and Therapeutics, 2003, 10, 127-133.	0.1	0
206	The Light-induced Reactions of Tryptophan with Halocompounds $\hat{A}\P$. Photochemistry and Photobiology, 2002, 75, 362.	2.5	36
207	Differential effects of a molybdopterin synthase sulfurylase (<i>moeB</i>) mutation on <i>Escherichia coli</i>) molybdoenzyme maturation. Biochemistry and Cell Biology, 2002, 80, 435-443.	2.0	14
208	Optimization of expression and the purification by organic extraction of the integral membrane protein EmrE. Protein Expression and Purification, 2002, 26, 111-121.	1.3	31
209	Visualization of Proteins in Acrylamide Gels Using Ultraviolet Illumination. Analytical Biochemistry, 2002, 301, 91-96.	2.4	48
210	Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in <i>Escherichia coli</i> . Canadian Journal of Microbiology, 2001, 47, 33-40.	1.7	81
211	ldentification of a twinâ€arginine leaderâ€binding protein. Molecular Microbiology, 2001, 40, 323-331.	2.5	157
212	Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in <i>Escherichia coli</i> . Canadian Journal of Microbiology, 2001, 47, 33-40.	1.7	46
213	Multiple Roles for the Twin Arginine Leader Sequence of Dimethyl Sulfoxide Reductase of Escherichia coli. Journal of Biological Chemistry, 2000, 275, 22526-22531.	3.4	62
214	Escherichia coli TehB RequiresS-Adenosylmethionine as a Cofactor To Mediate Tellurite Resistance. Journal of Bacteriology, 2000, 182, 6509-6513.	2.2	43
215	The Role of Cysteine Residues in Tellurite Resistance Mediated by the TehAB Determinant. Biochemical and Biophysical Research Communications, 2000, 277, 394-400.	2.1	17
216	Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology (United Kingdom), 1999, 145, 2549-2557.	1.8	118

#	Article	IF	Citations
217	Selenium metabolism in Escherichia coli. BioMetals, 1998, 11, 223-227.	4.1	189
218	A Novel and Ubiquitous System for Membrane Targeting and Secretion of Cofactor-Containing Proteins. Cell, 1998, 93, 93-101.	28.9	446
219	Alpha-periodicity analysis of small multidrug resistance (SMR) efflux transporters. Biochemistry and Cell Biology, 1998, 76, 791-797.	2.0	12
220	Alpha-periodicity analysis of small multidrug resistance (SMR) efflux transporters. Biochemistry and Cell Biology, 1998, 76, 791-797.	2.0	4
221	Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology (United Kingdom), 1997, 143, 1181-1189.	1.8	166
222	Expression and epitope tagging of the membrane anchor subunit (DmsC) of Escherichia coli dimethyl sulfoxide reductase. Protein Engineering, Design and Selection, 1997, 10, 285-290.	2.1	11
223	The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Molecular Microbiology, 1996, 19, 1167-1175.	2.5	275
224	Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in <i>Escherichia coli</i> . Canadian Journal of Microbiology, 1995, 41, 92-98.	1.7	43
225	Differential Actions of a Mammalian Gonadotropin-Releasing Hormone Antagonist on Gonadotropin-ll and Growth Hormone Release in Goldfish, <i>Carassius auratus</i> . Neuroendocrinology, 1994, 59, 561-571.	2.5	8
226	Characterization of the growth inhibition phenotype of the kilAtelAB operon from IncPl $$ t plasmid RK2Ter. Biochemistry and Cell Biology, 1994, 72, 333-342.	2.0	12
227	A new gonadotropin-releasing hormone (GnRH) superagonist in goldfish: influence of dialkyl-d-homoarginine at position 6 on gonadotropin-II and growth hormone release. Regulatory Peptides, 1994, 53, 1-15.	1.9	5
228	Evaluation of transmembrane helix prediction methods using the recently defined NMR structures of the coat proteins from bacteriophages M13 and Pf1. BBA - Proteins and Proteomics, 1993, 1202, 161-168.	2.1	27
229	Long-lived fluorescence lifetime from tyrosine in a peptide derived from S-100b. Biochimica Et Biophysica Acta - General Subjects, 1992, 1117, 265-270.	2.4	3
230	Use of diethyldithiocarbamate for quantitative determination of tellurite uptake by bacteria. Analytical Biochemistry, 1992, 204, 292-295.	2.4	58
231	Fluorescence properties of angiotensin II analogues in receptor-simulating environments: relationship between tyrosinate fluorescence lifetime and biological activity. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1065, 21-28.	2.6	32
232	Tyrosinate fluorescence lifetimes for oxytocin and vasopressin in receptor-simulating environments: Relationship to biological activity and 1H-NMR data. Biochemical and Biophysical Research Communications, 1990, 171, 996-1001.	2.1	14
233	Conformational analysis of thioredoxin using organoarsenical reagents as probes. A time-resolved fluorescence anisotropy and size exclusion chromatography study. Biochemistry and Cell Biology, 1989, 67, 25-33.	2.0	9
234	Spectroscopic characterization of thioredoxin covalently modified with monofunctional organoarsenical reagents. Biochemistry, 1987, 26, 863-871.	2.5	34

#	Article	IF	CITATIONS
235	Microbial-Based Bioremediation of Selenium and Tellurium Compounds. , 0, , .		9
236	Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. SSRN Electronic Journal, 0, , .	0.4	20
237	Comparison of Confirmed COVID-19 with SARS and MERS Cases - Clinical Characteristics, Laboratory Findings, Radiographic Signs and Outcomes: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	3
238	Global Comparison of Influenza Type A and B with COVID-19: A Systematic Review and Meta-Analysis on Clinical, Laboratory, and Radiographic Findings. SSRN Electronic Journal, $0,$	0.4	1