Adele M Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682699/publications.pdf

Version: 2024-02-01

26 papers 1,631 citations

394421 19 h-index 26 g-index

26 all docs

26 docs citations

times ranked

26

1898 citing authors

#	Article	IF	CITATIONS
1	Efficient Reductive Defluorination of Branched PFOS by Metal–Porphyrin Complexes. Environmental Science & Environmental Sci	10.0	6
2	A microstructural investigation of a Na2SO4 activated cement-slag blend. Cement and Concrete Research, 2021, 150, 106609.	11.0	25
3	Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation. Geochimica Et Cosmochimica Acta, 2020, 272, 105-120.	3.9	72
4	Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend – Insights from pore solution chemistry. Cement and Concrete Research, 2020, 135, 106110.	11.0	63
5	Flow-Electrode CDI Removes the Uncharged Ca–UO ₂ –CO ₃ Ternary Complex from Brackish Potable Groundwater: Complex Dissociation, Transport, and Sorption. Environmental Science & Environmental Science	10.0	54
6	Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments. Journal of Environmental Sciences, 2019, 77, 303-311.	6.1	8
7	Effect of <i>Shewanella oneidensis</i> on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides. Environmental Science & Environmental Sc	10.0	80
8	Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1760-1769.	2.4	8
9	Oxidant Generation Resulting from the Interaction of Copper with Menadione (Vitamin K3)–a Model for Metal-mediated Oxidant Generation in Living Systems. Journal of Inorganic Biochemistry, 2018, 188, 38-49.	3.5	4
10	Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite. Geochimica Et Cosmochimica Acta, 2017, 218, 257-272.	3.9	63
11	Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust. Environmental Science & Environmental Scienc	10.0	26
12	Use of fourier transform infrared spectroscopy to examine the Fe(II)-Catalyzed transformation of ferrihydrite. Talanta, 2017, 175, 30-37.	5. 5	38
13	Influence of Dissolved Silicate on Rates of Fe(II) Oxidation. Environmental Science & Eamp; Technology, 2016, 50, 11663-11671.	10.0	59
14	The reduction of 4-chloronitrobenzene by Fe(II)-Fe(III) oxide systems - correlations with reduction potential and inhibition by silicate. Journal of Hazardous Materials, 2016, 320, 143-149.	12.4	31
15	Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles. Environmental Science: Nano, 2016, 3, 737-744.	4.3	19
16	Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters. Science of the Total Environment, 2016, 547, 104-113.	8.0	19
17	Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study. Journal of Hazardous Materials, 2016, 303, 101-110.	12.4	26
18	Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochimica Et Cosmochimica Acta, 2015, 160, 117-131.	3.9	107

#	Article	IF	CITATIONS
19	Ferrous iron oxidation under acidic conditions – The effect of ferric oxide surfaces. Geochimica Et Cosmochimica Acta, 2014, 145, 1-12.	3.9	106
20	The impacts of low-cost treatment options upon scale formation potential in remote communities reliant on hard groundwaters. A case study: Northern Territory, Australia. Science of the Total Environment, 2012, 416, 22-31.	8.0	11
21	Superoxide-Mediated Formation and Charging of Silver Nanoparticles. Environmental Science & Emp; Technology, 2011, 45, 1428-1434.	10.0	144
22	Silver Nanoparticleâ^Reactive Oxygen Species Interactions: Application of a Chargingâ^Discharging Model. Journal of Physical Chemistry C, 2011, 115, 5461-5468.	3.1	193
23	Mineral species control of aluminum solubility in sulfate-rich acidic waters. Geochimica Et Cosmochimica Acta, 2011, 75, 965-977.	3.9	55
24	Schwertmannite stability in acidified coastal environments. Geochimica Et Cosmochimica Acta, 2010, 74, 482-496.	3.9	61
25	Dissociation kinetics of Fe(III)– and Al(III)–natural organic matter complexes at pH 6.0 and 8.0 and 25°C. Geochimica Et Cosmochimica Acta, 2009, 73, 2875-2887.	3.9	35
26	The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica Et Cosmochimica Acta, 2009, 73, 4409-4422.	3.9	318