S V Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6825260/publications.pdf

Version: 2024-02-01

87888 118850 4,766 169 38 62 citations h-index g-index papers 169 169 169 3838 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron–Hole Plasma. Nano Letters, 2015, 15, 6187-6192.	9.1	162
2	Lightâ€Induced Tuning and Reconfiguration of Nanophotonic Structures. Laser and Photonics Reviews, 2017, 11, 1700108.	8.7	158
3	Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles. Nano Letters, 2017, 17, 3047-3053.	9.1	150
4	Halideâ€Perovskite Resonant Nanophotonics. Advanced Optical Materials, 2019, 7, 1800784.	7.3	146
5	Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks. ACS Nano, 2019, 13, 4140-4147.	14.6	134
6	Light-Emitting Halide Perovskite Nanoantennas. Nano Letters, 2018, 18, 1185-1190.	9.1	132
7	Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces. ACS Photonics, 2017, 4, 728-735.	6.6	131
8	Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale, 2016, 8, 9721-9726.	5.6	128
9	Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating. Nano Letters, 2017, 17, 2945-2952.	9.1	118
10	Fabrication of Hybrid Nanostructures via Nanoscale Laserâ€Induced Reshaping for Advanced Light Manipulation. Advanced Materials, 2016, 28, 3087-3093.	21.0	107
11	Room-Temperature Lasing from Mie-Resonant Nonplasmonic Nanoparticles. ACS Nano, 2020, 14, 8149-8156.	14.6	105
12	Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics. Nanoscale, 2016, 8, 5043-5048.	5.6	103
13	Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Optics Express, 2015, 23, 5915.	3.4	95
14	Tunable Hybrid Fano Resonances in Halide Perovskite Nanoparticles. Nano Letters, 2018, 18, 5522-5529.	9.1	94
15	High-Harmonic Generation from Resonant Dielectric Metasurfaces Empowered by Bound States in the Continuum. ACS Photonics, 2022, 9, 567-574.	6.6	84
16	Femtosecond laser color marking of metal and semiconductor surfaces. Applied Physics A: Materials Science and Processing, 2012, 107, 301-305.	2.3	74
17	Electronic structure of CsPbBr _{3â^x} Cl _x perovskites: synthesis, experimental characterization, and DFT simulations. Physical Chemistry Chemical Physics, 2019, 21, 18930-18938.	2.8	68
18	Active meta-optics and nanophotonics with halide perovskites. Applied Physics Reviews, 2019, 6, 031307.	11.3	68

#	Article	IF	CITATIONS
19	Nonlinear Transient Dynamics of Photoexcited Resonant Silicon Nanostructures. ACS Photonics, 2016, 3, 1546-1551.	6.6	67
20	Towards all-dielectric metamaterials and nanophotonics. Proceedings of SPIE, 2015, , .	0.8	66
21	Controllable femtosecond laserâ€induced dewetting for plasmonic applications. Laser and Photonics Reviews, 2016, 10, 91-99.	8.7	66
22	Demonstration of the enhanced Purcell factor in all-dielectric structures. Applied Physics Letters, 2016, 108, .	3.3	62
23	Lightâ€Emitting Nanophotonic Designs Enabled by Ultrafast Laser Processing of Halide Perovskites. Small, 2020, 16, e2000410.	10.0	60
24	Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces. Nanoscale, 2017, 9, 12486-12493.	5.6	58
25	A Few-Minute Synthesis of CsPbBr ₃ Nanolasers with a High Quality Factor by Spraying at Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1040-1048.	8.0	58
26	Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation. Nanoscale, 2016, 8, 17809-17814.	5.6	54
27	Single-Step Laser Plasmonic Coloration of Metal Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1422-1427.	8.0	54
28	Nanoscale Generation of White Light for Ultrabroadband Nanospectroscopy. Nano Letters, 2018, 18, 535-539.	9.1	52
29	Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems. International Materials Reviews, 2019, 64, 439-477.	19.3	50
30	Laser printing of resonant plasmonic nanovoids. Nanoscale, 2016, 8, 12352-12361.	5.6	49
31	Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface. Physical Review B, 2011, 83, .	3.2	48
32	Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface. JETP Letters, 2011, 94, 266-269.	1.4	46
33	All-dielectric thermonanophotonics. Advances in Optics and Photonics, 2021, 13, 643.	25.5	46
34	Metalâ€Dielectric Nanocavity for Realâ€Time Tracing Molecular Events with Temperature Feedback. Laser and Photonics Reviews, 2018, 12, 1700227.	8.7	45
35	Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances. Nanoscale, 2019, 11, 6747-6754.	5.6	43
36	Lasing Action from Anapole Metasurfaces. Nano Letters, 2021, 21, 6563-6568.	9.1	43

3

#	Article	IF	CITATIONS
37	Direct femtosecond laser fabrication of antireflective layer on GaAs surface. Applied Physics B: Lasers and Optics, 2013, 111, 419-423.	2.2	42
38	Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. Advanced Optical Materials, 2018, 6, 1800576.	7.3	40
39	Enhanced Multiphoton Processes in Perovskite Metasurfaces. Nano Letters, 2021, 21, 7191-7197.	9.1	40
40	Perovskite–Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip. ACS Nano, 2020, 14, 8126-8134.	14.6	39
41	Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe. Optics Letters, 2013, 38, 1452.	3.3	38
42	Purcell effect in active diamond nanoantennas. Nanoscale, 2018, 10, 8721-8727.	5 . 6	38
43	Gallium Phosphide Nanowires in a Free-Standing, Flexible, and Semitransparent Membrane for Large-Scale Infrared-to-Visible Light Conversion. ACS Nano, 2020, 14, 10624-10632.	14.6	38
44	Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics. Applied Physics Letters, 2021, 118, .	3. 3	37
45	Temperature-feedback direct laser reshaping of silicon nanostructures. Applied Physics Letters, 2017, 111, .	3.3	35
46	Structural transformation and residual stresses in surface layers of $\hat{l}\pm\hat{A}+\hat{A}\hat{l}^2$ titanium alloys nanotextured by femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2015, 119, 241-247.	2.3	34
47	Single-particle perovskite lasers: from material properties to cavity design. Nanophotonics, 2020, 9, 599-610.	6.0	34
48	Allâ€Optical Nanoscale Heating and Thermometry with Resonant Dielectric Nanoparticles for Controllable Drug Release in Living Cells. Laser and Photonics Reviews, 2020, 14, 1900082.	8.7	34
49	Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films. JETP Letters, 2015, 101, 394-397.	1.4	33
50	Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation. Journal of Experimental and Theoretical Physics, 2015, 120, 946-959.	0.9	33
51	Nanoscale surface boiling in sub-threshold damage and above-threshold spallation of bulk aluminum and gold by single femtosecond laser pulses. Laser Physics Letters, 2016, 13, 025603.	1.4	33
52	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices. Advanced Optical Materials, 2021, 9, 2001715.	7.3	33
53	Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse. Applied Physics A: Materials Science and Processing, 2014, 117, 1757-1763.	2.3	32
54	Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse. Laser Physics Letters, 2014, 11, 065301.	1.4	32

#	Article	IF	CITATIONS
55	Photoluminescence quenching of dye molecules near a resonant silicon nanoparticle. Scientific Reports, 2018, 8, 6107.	3.3	32
56	Plasmonic nanosponges filled with silicon for enhanced white light emission. Nanoscale, 2020, 12, 1013-1021.	5.6	32
57	Black Au-Decorated TiO ₂ Produced via Laser Ablation in Liquid. ACS Applied Materials & mp; Interfaces, 2021, 13, 6522-6531.	8.0	32
58	Directional Lasing from Nanopatterned Halide Perovskite Nanowire. Nano Letters, 2021, 21, 10019-10025.	9.1	32
59	Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface. Laser Physics Letters, 2013, 10, 056004.	1.4	31
60	Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses. JETP Letters, 2011, 94, 34-38.	1.4	30
61	Direct Imprinting of Laser Field on Halide Perovskite Single Crystal for Advanced Photonic Applications. Laser and Photonics Reviews, 2021, 15, 2100094.	8.7	30
62	Formation of crownlike and related nanostructures on thin supported gold films irradiated by single diffraction-limited nanosecond laser pulses. Physical Review E, 2014, 90, 023017.	2.1	29
63	Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses. Nanoscale, 2018, 10, 11403-11409.	5.6	28
64	Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation. Nanophotonics, 2020, 9, 3977-3984.	6.0	28
65	Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation. JETP Letters, 2014, 99, 518-522.	1.4	27
66	Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses. Nanotechnologies in Russia, 2011, 6, 237-243.	0.7	26
67	Broadband Antireflection with Halide Perovskite Metasurfaces. Laser and Photonics Reviews, 2020, 14, 2000338.	8.7	26
68	Optimized interatomic potential for study of structure and phase transitions in Si-Au and Si-Al systems. Computational Materials Science, 2020, 184, 109891.	3.0	26
69	Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures. Optics Express, 2021, 29, 37128.	3.4	26
70	Ultrafast electron dynamics on the silicon surface excited by an intense femtosecond laser pulse. JETP Letters, 2012, 96, 375-379.	1.4	24
71	Multifunctional and Transformative Metaphotonics with Emerging Materials. Chemical Reviews, 2022, 122, 15414-15449.	47.7	23
72	Photogenerated Free Carrierâ€Induced Symmetry Breaking in Spherical Silicon Nanoparticle. Advanced Optical Materials, 2018, 6, 1701153.	7.3	22

#	Article	IF	CITATIONS
73	Si _{1â^'x} Ge _x nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications. Nanoscale, 2019, 11, 11634-11641.	5.6	22
74	Stimulated Raman Scattering from Mie-Resonant Subwavelength Nanoparticles. Nano Letters, 2020, 20, 5786-5791.	9.1	22
75	Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication. Optics Letters, 2015, 40, 1687.	3.3	21
76	Singleâ€Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector. Advanced Functional Materials, 2022, 32, .	14.9	21
77	Halide Perovskite Nanocrystals with Enhanced Water Stability for Upconversion Imaging in a Living Cell. Journal of Physical Chemistry Letters, 2021, 12, 8991-8998.	4.6	20
78	Light-emitting perovskite solar cell with segregation enhanced self doping. Applied Surface Science, 2019, 476, 486-492.	6.1	19
79	Focusing of intense femtosecond surface plasmon-polaritons. JETP Letters, 2013, 97, 599-603.	1.4	18
80	Single-step direct laser writing of halide perovskite microlasers. Applied Physics Express, 2019, 12, 122001.	2.4	18
81	Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells. Nano Energy, 2021, 89, 106484.	16.0	18
82	Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2011, 104, 701-705.	2.3	16
83	Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances. Nanoscale, 2019, 11, 17800-17806.	5.6	16
84	Enhanced terahertz emission from imprinted halide perovskite nanostructures. Nanophotonics, 2020, 9, 187-194.	6.0	16
85	Metal-dielectric nanoantenna for radiation control of a single-photon emitter. Optical Materials Express, 2020, 10, 29.	3.0	15
86	Efficient Emission Outcoupling from Perovskite Lasers into Highly Directional and Longâ€Propagationâ€Length Bloch Surface Waves. Laser and Photonics Reviews, 2022, 16, .	8.7	15
87	Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research, 2022, 3, .	3.6	15
88	Femtosecond laser modification of titanium surfaces: direct imprinting of hydroxylapatite nanopowder and wettability tuning via surface microstructuring. Laser Physics Letters, 2013, 10, 045605.	1.4	14
89	Local Crystallization of a Resonant Amorphous Silicon Nanoparticle for the Implementation of Optical Nanothermometry. JETP Letters, 2018, 107, 699-704.	1.4	14
90	Suppression of Electric Field-Induced Segregation in Sky-Blue Perovskite Light-Emitting Electrochemical Cells. Nanomaterials, 2020, 10, 1937.	4.1	14

#	Article	IF	Citations
91	Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles. ACS Nano, 2020, 14, 13602-13610.	14.6	14
92	Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100nm resolution. Optics Communications, 2013, 308, 125-129.	2.1	13
93	Synergistic Effect of Plasma and Laser Processes in Liquid for Alloyed-Nanoparticle Synthesis. Physical Review Applied, 2020, 13, .	3.8	13
94	Single-Step Microfluidic Synthesis of Halide Perovskite Nanolasers in Suspension. Chemistry of Materials, 2021, 33, 2777-2784.	6.7	13
95	Reconfigurable Nearâ€field Enhancement with Hybrid Metalâ€Dielectric Oligomers. Laser and Photonics Reviews, 2019, 13, 1800274.	8.7	12
96	Engineering the Charge Transport Properties of Resonant Silicon Nanoparticles in Perovskite Solar Cells. Energy Technology, 2020, 8, 1900877.	3.8	12
97	Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials. Applied Physics Letters, 2021, 118, .	3.3	12
98	Giant Enhancement of Radiative Recombination in Perovskite Light-Emitting Diodes with Plasmonic Core-Shell Nanoparticles. Nanomaterials, 2021, 11, 45.	4.1	12
99	Hybrid Perovskite Terahertz Photoconductive Antenna. Nanomaterials, 2021, 11, 313.	4.1	11
100	Excitonic versus Free-Carrier Contributions to the Nonlinearly Excited Photoluminescence in CsPbBr ₃ Perovskites. ACS Photonics, 2022, 9, 179-189.	6.6	11
101	Modifying light–matter interactions with perovskite nanocrystals inside antiresonant photonic crystal fiber. Photonics Research, 2021, 9, 1462.	7.0	10
102	Optically Reconfigurable Spherical Geâ€Sbâ€Te Nanoparticles with Reversible Switching. Laser and Photonics Reviews, 2022, 16, .	8.7	10
103	Nonlinear optical heating of all-dielectric super-cavity: efficient light-to-heat conversion through giant thermorefractive bistability. Nanophotonics, 2022, 11, 3981-3991.	6.0	10
104	Enhanced Photoluminescence of Halide Perovskite Nanocrystals Mediated by a Higher-Order Topological Metasurface. Journal of Physical Chemistry C, 2021, 125, 9884-9890.	3.1	9
105	Nonlinear evolution of aluminum surface relief under multiple femtosecond laser irradiation. JETP Letters, 2015, 101, 350-357.	1.4	8
106	Manipulation Technique for Precise Transfer of Single Perovskite Nanoparticles. Nanomaterials, 2020, 10, 1306.	4.1	8
107	Tunable Mie Resonances of Tin-based Iodide Perovskite Islandlike Films with Enhanced Infrared Photoluminescence. Journal of Physical Chemistry Letters, 2020, 11, 3332-3338.	4.6	8
108	Photoinduced Migration of Ions in Optically Resonant Perovskite Nanoparticles. JETP Letters, 2018, 107, 742-748.	1.4	7

#	Article	IF	Citations
109	Dipolar cation accumulation at the interfaces of perovskite light-emitting solar cells. Journal of Materials Chemistry C, 2020, 8, 16992-16999.	5. 5	7
110	Laser-printed hollow nanostructures for nonlinear plasmonics. Applied Physics Letters, 2020, 117, .	3.3	7
111	Nanoscale Gallium Phosphide Epilayers on Sapphire for Low-Loss Visible Nanophotonics. ACS Applied Nano Materials, 2022, 5, 8846-8858.	5.0	7
112	Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance. Journal of Physics: Conference Series, 2017, 917, 062002.	0.4	6
113	Recrystallization of CsPbBr3 Nanoparticles in Fluoropolymer Nonwoven Mats for Down- and Up-Conversion of Light. Nanomaterials, 2021, 11, 412.	4.1	6
114	Flexible Perovskite CsPbBr ₃ Light Emitting Devices Integrated with GaP Nanowire Arrays in Highly Transparent and Durable Functionalized Silicones. Journal of Physical Chemistry Letters, 2021, 12, 9672-9676.	4.6	6
115	Incorporation of Perovskite Nanocrystals into Polymer Matrix for Enhanced Stability in Biological Media: <i>In Vitro</i> and <i>In Vivo</i> Studies. ACS Applied Bio Materials, 2022, 5, 2411-2420.	4.6	6
116	Revealing Low-Radiative Modes of Nanoresonators with Internal Raman Scattering. JETP Letters, 2019, 110, 25-30.	1.4	5
117	Halide-Perovskite Nanophotonics: Halide-Perovskite Resonant Nanophotonics (Advanced Optical) Tj ETQq1 1 0.7	784314 rg	BT <u>f</u> Overlock
118	Enhanced Raman Scattering for Probing Nearâ€Field Distribution in Allâ€Dielectric Nanostructures. Advanced Photonics Research, 2021, 2, 2000139.	3.6	5
119	Nonlinear optical properties of Sponge Si/Au nanoparticle. Journal of Physics: Conference Series, 2020, 1461, 012081.	0.4	3
120	Femtosecond Laser-Assisted Formation of Hybrid Nanoparticles from Bi-Layer Gold–Silicon Films for Microscale White-Light Source. Nanomaterials, 2022, 12, 1756.	4.1	3
121	Plasmon–polariton assisted formation of nanotip arrays on surfaces of bulk aluminum upon femtosecond laser irradiation. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 991-995.	0.6	2
122	Femtosecond Laser-Induced Periodical Nanomodification of Surface Composition. Semiconductors, 2019, 53, 2094-2099.	0.5	2
123	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	6.6	2
124	Large-scale flexible membrane with resonant silicon nanowires for infrared visualization via efficient third harmonic generation. Applied Physics Letters, 2022, 120, 151102.	3.3	2
125	Terahertz Detection with Optically Gated Halide Perovskites. ACS Photonics, 2022, 9, 1663-1670.	6.6	2
126	Nanoand microstructuring of materials' surfaces using femtosecond laser pulses. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 358-361.	0.6	1

#	Article	IF	Citations
127	Fabrication of spherical GeSbTe nanoparticles by laser printing technique. Journal of Physics: Conference Series, 2017, 917, 062017.	0.4	1
128	Resonant silicon nanoparticles for efficiency and stability enhancement of perovskite solar cells. Journal of Physics: Conference Series, 2018, 1135, 012067.	0.4	1
129	Femtosecond laser nanostructuring of reinforcement bars surface for improvement of its interaction with concrete. Journal of Physics: Conference Series, 2018, 1092, 012082.	0.4	1
130	Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. Journal of Physics: Conference Series, 2018, 1092, 012038.	0.4	1
131	Synthesis of perovskite nanoparticles in microfluidic chips. Journal of Physics: Conference Series, 2020, 1461, 012071.	0.4	1
132	Optical modes in perovskite nanowire with shallow bi-periodic grating. Journal of Physics: Conference Series, 2020, 1461, 012013.	0.4	1
133	2D Perovskite Micro-optics Enabled by Direct Femtosecond-Laser Projection Lithography. Journal of Physics: Conference Series, 2021, 2015, 012075.	0.4	1
134	Silicon nanowire/polymer membrane for infrared visualization via third-harmonic generation. Journal of Physics: Conference Series, 2021, 2015, 012096.	0.4	1
135	Structural color image augmented by inkjet printed perovskite patterning. Applied Materials Today, 2022, 28, 101545.	4.3	1
136	Parabolic-like nanoantennas fabrication by femtosecond laser pulses for strong-field plasmonics. , 2014, , .		0
137	Second harmonic splitting in silicon nanoparticles under ultrashot-pulse excitation. AIP Conference Proceedings, 2017, , .	0.4	0
138	Photoluminescence behavior of nanoimprinted halide perovskite at low temperatures. AIP Conference Proceedings, 2017, , .	0.4	0
139	Resonant halide perovskite nanoparticles. AIP Conference Proceedings, 2017, , .	0.4	0
140	Metal-dielectric nanocavity as a versatile optical sensing platform., 2017,,.		0
141	Nanoscale optical high-temperature sensor. , 2017, , .		0
142	Nanoimprinted hybrid perovskite metasurfaces. , 2017, , .		0
143	Hybrid nanocavity for molecular sensing. , 2017, , .		0
144	Optical properties of spatially dispersive Mie-resonant halide perovskite nanoparticles. Journal of Physics: Conference Series, 2018, 1092, 012009.	0.4	0

#	Article	IF	Citations
145	Photoluminescence spectral position shift governed by optical heating of perovskite resonant nanoparticles. Journal of Physics: Conference Series, 2018, 1092, 012179.	0.4	O
146	Ultrafast All-Optical Tuning of Fano Resonant Halide Perovskite Nanoparticles. , 2019, , .		0
147	Semiconductor resonant all-optical temperature sensor and thermal release trigger of encapsulated anti-cancer drugs for in vitro studies. Journal of Physics: Conference Series, 2019, 1410, 012077.	0.4	O
148	Evaluating the performance of a single-layer blue light-emitting electrochemical cell based on a perovskite-polymer composite. AIP Conference Proceedings, 2020, , .	0.4	O
149	Improvement of methylammonium lead iodide based perovskite solar cells by phosphorus doped silicon nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	O
150	Theoretical study of nonlinear photoluminescence from perovskite quantum dots enhanced by resonant silicon nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	0
151	Polymer modification of perovskite solar cells to increase open-circuit voltage. AIP Conference Proceedings, 2020, , .	0.4	O
152	Light induced temperature decrease of semiconductor nanoparticle. Journal of Physics: Conference Series, 2020, 1461, 012179.	0.4	0
153	Doping of resonant silicon nanodisks for efficient optical heating in the near-infrared range. Journal of Physics: Conference Series, 2020, 1461, 012201.	0.4	O
154	Fabrication of halide-perovskite resonant microcylinders by nanoimprint lithography. Journal of Physics: Conference Series, 2020, 1461, 012178.	0.4	0
155	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices (Advanced Optical) Tj ETQq1	1,0,78431 7.3	4 _o rgBT /Ove
156	Photoluminescence behavior of nanoimprinted halide perovskite at low temperatures., 2018,,.		0
157	Numerical study of purcell effect enhancement for CsPbBr3 perovskite cubic particle. AIP Conference Proceedings, 2020, , .	0.4	O
158	Microfluidics-based synthesis of lead cesium bromide perovskite microcrystals. AIP Conference Proceedings, 2020, , .	0.4	0
159	Semitransparent visualizers of infrared lasers based on perovskite quantum dots. Journal of Physics: Conference Series, 2021, 2015, 012112.	0.4	O
160	Optical heating of doped semiconductor nanocylinders supporting quasi-BIC modes. Journal of Physics: Conference Series, 2021, 2015, 012129.	0.4	0
161	Upconversion photoluminescence of perovskite nanoparticles encapsulated in porous sub-micron spheres supporting Mie resonances Journal of Physics: Conference Series, 2021, 2015, 012089.	0.4	O
162	Continuous-Flow Synthesis of Perovskite Particles for Optical Application. Journal of Physics: Conference Series, 2021, 2015, 012072.	0.4	0

#	Article	IF	CITATIONS
163	Ultrafast laser heating of non-plasmonic nanocylinders. Journal of Physics: Conference Series, 2021, 2015, 012104.	0.4	O
164	Anion Exchange Reaction in Halide Perovskite Single Crystals Structured by Laser Pulses. Journal of Physics: Conference Series, 2021, 2015, 012085.	0.4	0
165	Control of spontaneous emission rate in lead halide perovskite film on hyperbolic metamaterial. Journal of Physics: Conference Series, 2021, 2015, 012153.	0.4	0
166	Halide Perovskites for Photonics and Optoelectronics: introduction to special issue. Optical Materials Express, 2022, 12, 1764.	3.0	0
167	Study of nonlinear optical phenomena in silicone films encapsulated with SiO ₂ and Si/SiO ₂ spherical particles. Journal of Physics: Conference Series, 2021, 2103, 012119.	0.4	0
168	Processing and characterization of GaP nanowires encapsulated into a PDMS large-scale membrane for flexible optoelectronics. Journal of Physics: Conference Series, 2021, 2086, 012093.	0.4	0
169	Study of nonlinear optical phenomena in silicon nanowires. Journal of Physics: Conference Series, 2021, 2086, 012023.	0.4	0