Jaroslaw Aronowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6824878/publications.pdf

Version: 2024-02-01

109321 128289 5,366 65 35 60 citations h-index g-index papers 66 66 66 5546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Pathophysiology of Cerebral Hemorrhage. Stroke, 2011, 42, 1781-1786.	2.0	662
2	Reperfusion Injury: Demonstration of Brain Damage Produced by Reperfusion after Transient Focal Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 1048-1056.	4.3	342
3	Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferatorâ€activated receptor γ in microglia/macrophages. Annals of Neurology, 2007, 61, 352-362.	5.3	319
4	New Horizons for Primary Intracerebral Hemorrhage Treatment: Experience From Preclinical Studies. Neurological Research, 2005, 27, 268-279.	1.3	260
5	Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. Journal of Neuroscience, 2015, 35, 11281-11291.	3.6	230
6	15d-Prostaglandin J ₂ Activates Peroxisome Proliferator-Activated Receptor- \hat{I}^3 , Promotes Expression of Catalase, and Reduces Inflammation, Behavioral Dysfunction, and Neuronal Loss after Intracerebral Hemorrhage in Rats. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 811-820.	4.3	222
7	Transcription Factor Nrf2 Protects the Brain From Damage Produced by Intracerebral Hemorrhage. Stroke, 2007, 38, 3280-3286.	2.0	202
8	Cell death in experimental intracerebral hemorrhage: The "black hole―model of hemorrhagic damage. Annals of Neurology, 2002, 51, 517-524.	5.3	183
9	Early Exclusive Use of the Affected Forelimb After Moderate Transient Focal Ischemia in Rats. Stroke, 2000, 31, 1144-1152.	2.0	172
10	Nuclear Factor-l [®] B and Cell Death After Experimental Intracerebral Hemorrhage in Rats. Stroke, 1999, 30, 2472-2478.	2.0	166
11	Hematoma Resolution as a Therapeutic Target. Stroke, 2009, 40, S92-4.	2.0	150
12	Neuronal PPAR $\hat{1}^3$ Deficiency Increases Susceptibility to Brain Damage after Cerebral Ischemia. Journal of Neuroscience, 2009, 29, 6186-6195.	3.6	148
13	Cleaning up after <scp>ICH</scp> : the role of Nrf2 in modulating microglia function and hematoma clearance. Journal of Neurochemistry, 2015, 133, 144-152.	3.9	138
14	Neuroprotective Role of Haptoglobin after Intracerebral Hemorrhage. Journal of Neuroscience, 2009, 29, 15819-15827.	3.6	136
15	Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nature Communications, 2017, 8, 602.	12.8	114
16	Distinct patterns of intracerebral hemorrhage-induced alterations in NF-κB subunit, iNOS, and COX-2 expression. Journal of Neurochemistry, 2006, 101, 652-663.	3.9	113
17	Dimethyl Fumarate Protects Brain From Damage Produced by Intracerebral Hemorrhage by Mechanism Involving Nrf2. Stroke, 2015, 46, 1923-1928.	2.0	108
18	Ethanol Plus Caffeine (Caffeinol) for Treatment of Ischemic Stroke. Stroke, 2003, 34, 1246-1251.	2.0	106

#	Article	IF	CITATIONS
19	Pleiotropic Role of <scp>PPAR</scp> <i>i)î³</i> in Intracerebral Hemorrhage: An Intricate System Involving Nrf2, <scp>RXR</scp> , and <scp>NF</scp> â€ <i>îº</i> B. CNS Neuroscience and Therapeutics, 2015, 21, 357-366.	3.9	99
20	Ischemia-Induced Neuronal Damage: A Role for Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 1-6.	4.3	97
21	Intra-Arterial Delivery Is Not Superior to Intravenous Delivery of Autologous Bone Marrow Mononuclear Cells in Acute Ischemic Stroke. Stroke, 2013, 44, 3463-3472.	2.0	95
22	An Alternative Method for the Quantitation of Neuronal Damage after Experimental Middle Cerebral Artery Occlusion in Rats: Analysis of Behavioral Deficit. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 705-713.	4.3	93
23	Peroxisome-proliferator-activated receptor-gamma (PPAR \hat{i}^3) activation protects neurons from NMDA excitotoxicity. Brain Research, 2006, 1073-1074, 460-469.	2.2	80
24	Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPAR \hat{I}^3) and 15d-prostaglandin J2 \hat{a} e "Mediated protection of brain after experimental cerebral ischemia in rat. Brain Research, 2006, 1096, 196-203.	2,2	74
25	In Vivo Therapeutic Gas Delivery for Neuroprotection With Echogenic Liposomes. Circulation, 2010, 122, 1578-1587.	1.6	65
26	Design of a Prospective, Dose-Escalation Study Evaluating the Safety of Pioglitazone for Hematoma Resolution in Intracerebral Hemorrhage (SHRINC). International Journal of Stroke, 2013, 8, 388-396.	5.9	65
27	Citicoline for treatment of experimental focal ischemia: Histologic and behavioral outcome. Neurological Research, 1996, 18, 570-574.	1.3	63
28	Bone marrow mononuclear cells protect neurons and modulate microglia in cell culture models of ischemic stroke. Journal of Neuroscience Research, 2010, 88, 2869-2876.	2.9	59
29	Polymorphonuclear Neutrophil in Brain Parenchyma After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2014, 5, 554-561.	4.2	53
30	Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1012-1021.	4.3	51
31	Interplay Between the Gamma Isoform of PKC and Calcineurin in Regulation of Vulnerability to Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 343-349.	4.3	50
32	Neurofilament Proteolysis after Focal Ischemia; When Do Cells Die after Experimental Stroke?. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 652-660.	4.3	47
33	Nrf2 to Pre-condition the Brain Against Injury Caused by Products of Hemolysis After ICH. Translational Stroke Research, 2013, 4, 71-75.	4.2	47
34	The Mitochondria-Derived Peptide Humanin Improves Recovery from Intracerebral Hemorrhage: Implication of Mitochondria Transfer and Microglia Phenotype Change. Journal of Neuroscience, 2020, 40, 2154-2165.	3.6	43
35	Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Scientific Reports, 2018, 8, 450.	3.3	36
36	Beneficial Role of Neutrophils Through Function of Lactoferrin After Intracerebral Hemorrhage. Stroke, 2018, 49, 1241-1247.	2.0	34

#	Article	IF	Citations
37	Brain Cleanup as a Potential Target for Poststroke Recovery. Stroke, 2020, 51, 958-966.	2.0	34
38	Reporting Standards for Preclinical Studies of Stroke Therapy. Stroke, 2016, 47, 2435-2438.	2.0	33
39	Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging, 2020, 12, 436-461.	3.1	33
40	Excitatory pathway engaging glutamate, calcineurin, and NFAT upregulates IL-4 in ischemic neurons to polarize microglia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 513-527.	4.3	29
41	Various Cell Populations Within the Mononuclear Fraction of Bone Marrow Contribute to the Beneficial Effects of Autologous Bone Marrow Cell Therapy in a Rodent Stroke Model. Translational Stroke Research, 2016, 7, 322-330.	4.2	28
42	Protective Effects of Autologous Bone Marrow Mononuclear Cells After Administering t-PA in an Embolic Stroke Model. Translational Stroke Research, 2018, 9, 135-145.	4.2	26
43	Autologous Bone Marrow Mononuclear Cells Exert Broad Effects on Short- and Long-Term Biological and Functional Outcomes in Rodents with Intracerebral Hemorrhage. Stem Cells and Development, 2015, 24, 2756-2766.	2.1	24
44	The Stroke Preclinical Assessment Network: Rationale, Design, Feasibility, and Stage 1 Results. Stroke, 2022, 53, 1802-1812.	2.0	22
45	Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 53-66.	4.3	21
46	Cytoprotective Role of Haptoglobin in Brain After Experimental Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 107-112.	1.0	20
47	Soluble CD163 in intracerebral hemorrhage: biomarker for perihematomal edema. Annals of Clinical and Translational Neurology, 2017, 4, 793-800.	3.7	19
48	Neutrophils, the Felons of the Brain. Stroke, 2019, 50, e42-e43.	2.0	19
49	Serial quantitative neuroimaging of iron in the intracerebral hemorrhage pig model. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 375-381.	4.3	18
50	Contribution of TRPC Channels in Neuronal Excitotoxicity Associated With Neurodegenerative Disease and Ischemic Stroke. Frontiers in Cell and Developmental Biology, 2020, 8, 618663.	3.7	18
51	Association Between Splenic Contraction and the Systemic Inflammatory Response After Acute Ischemic Stroke Varies with Age and Race. Translational Stroke Research, 2018, 9, 484-492.	4.2	16
52	Caffeinol at the Receptor Level. Stroke, 2010, 41, 363-367.	2.0	15
53	Proteasome Inhibitor Reduces Astrocytic iNOS Expression and Functional Deficit after Experimental Intracerebral Hemorrhage in Rats. Translational Stroke Research, 2012, 3, 146-153.	4.2	12
54	Serial Metabolic Evaluation of Perihematomal Tissues in the Intracerebral Hemorrhage Pig Model. Frontiers in Neuroscience, 2019, 13, 888.	2.8	12

#	Article	IF	CITATIONS
55	Cryopreservation of Bone Marrow Mononuclear Cells Alters Their Viability and Subpopulation Composition but Not Their Treatment Effects in a Rodent Stroke Model. Stem Cells International, 2016, 2016, 1-7.	2.5	11
56	Aspirin in stroke patients modifies the immunomodulatory interactions of marrow stromal cells and monocytes. Brain Research, 2019, 1720, 146298.	2.2	10
57	Lactoferrin and hematoma detoxification after intracerebral hemorrhage. Biochemistry and Cell Biology, 2021, 99, 97-101.	2.0	9
58	Agonism of the $\hat{l}\pm 7$ -acetylcholine receptor/PI3K/Akt pathway promotes neuronal survival after subarachnoid hemorrhage in mice. Experimental Neurology, 2021, 344, 113792.	4.1	6
59	Phagocytosis Assay of Microglia for Dead Neurons in Primary Rat Brain Cell Cultures. Bio-protocol, 2016, 6, .	0.4	6
60	The Role of PPARÎ ³ in Stroke. , 2014, , 301-320.		2
61	International Collaborations Are Essential for Stroke. Stroke, 2019, 50, 2993-2994.	2.0	1
62	Mechanisms of Cerebral Hemorrhage. , 2016, , 102-112.e6.		0
63	High Appraisal of Methodological Quality of Basic Science Articles Published in Stroke. Stroke, 2017, 48, 2337-2338.	2.0	0
64	Call for Basic Science Papers. Stroke, 2018, 49, 1803-1804.	2.0	0
65	Mechanisms of Damage After Cerebral Hemorrhage. , 2022, , 92-102.e9.		O