Michael Oellerich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6824109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graft-derived Cell-free DNA as a Noninvasive Biomarker of Cardiac Allograft Rejection: A Cohort Study on Clinical Validity and Confounding Factors. Transplantation, 2022, 106, 615-622.	1.0	12
2	Temporary antimetabolite treatment hold boosts SARS-CoV-2 vaccination–specific humoral and cellular immunity in kidney transplant recipients. JCI Insight, 2022, 7, .	5.0	62
3	Elevated fractional donorâ€derived cellâ€free DNA during subclinical graft injury after liver transplantation. Liver Transplantation, 2022, 28, 1911-1919.	2.4	12
4	Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Therapeutic Drug Monitoring, 2021, 43, 150-200.	2.0	89
5	Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nature Reviews Nephrology, 2021, 17, 591-603.	9.6	72
6	Implementation of medical tests in a Value-Based healthcare environment: A framework for delivering value. Clinica Chimica Acta, 2021, 521, 90-96.	1.1	1
7	Absolute or Relative Quantification of Donor-derived Cell-free DNA in Kidney Transplant Recipients: Case Series. Transplantation Direct, 2021, 7, e778.	1.6	15
8	A value proposition for natriuretic peptide measurement in the assessment of patients with suspected acute heart failure. Clinica Chimica Acta, 2020, 500, 98-103.	1.1	9
9	Time-Dependent Apparent Increase in dd-cfDNA Percentage in Clinically Stable Patients Between One and Five Years Following Kidney Transplantation. Clinical Chemistry, 2020, 66, 1290-1299.	3.2	24
10	Donor-Derived Cell-Free DNA Testing in Solid Organ Transplantation: A Value Proposition. journal of applied laboratory medicine, The, 2020, 5, 993-1004.	1.3	18
11	Plasma EGFR mutation testing in non-small cell lung cancer: A value proposition. Clinica Chimica Acta, 2019, 495, 481-486.	1.1	23
12	Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: Results from a prospective observational study. American Journal of Transplantation, 2019, 19, 3087-3099.	4.7	125
13	Circulating Cell-Free DNA—Diagnostic and Prognostic Applications in Personalized Cancer Therapy. Therapeutic Drug Monitoring, 2019, 41, 115-120.	2.0	33
14	Cell-Free Plasma DNA for Disease Stratification and Prognosis in Head and Neck Cancer. Clinical Chemistry, 2018, 64, 959-970.	3.2	27
15	A Universal Droplet Digital PCR Approach for Monitoring of Graft Health After Transplantation Using a Preselected SNP Set. Methods in Molecular Biology, 2018, 1768, 335-348.	0.9	12
16	Diagnostic value of alpha-1-fetoprotein (AFP) as a biomarker for hepatocellular carcinoma recurrence after liver transplantation. Clinical Biochemistry, 2018, 52, 20-25.	1.9	24
17	Therapeutic drug monitoring – Key to personalized pharmacotherapy. Clinical Biochemistry, 2017, 50, 375-379.	1.9	15
18	Using circulating cell-free DNA to monitor personalized cancer therapy. Critical Reviews in Clinical Laboratory Sciences, 2017, 54, 205-218.	6.1	107

MICHAEL OELLERICH

#	Article	IF	CITATIONS
19	Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: A prospective, observational, multicenter cohort study. PLoS Medicine, 2017, 14, e1002286.	8.4	150
20	Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation. Therapeutic Drug Monitoring, 2016, 38, S1-S20.	2.0	78
21	Therapeutic Drug Monitoring of Everolimus. Therapeutic Drug Monitoring, 2016, 38, 143-169.	2.0	102
22	Leveraging the real value of laboratory medicine with the value proposition. Clinica Chimica Acta, 2016, 462, 183-186.	1.1	50
23	Thiopurines Induce Oxidative Stress in T-Lymphocytes: A Proteomic Approach. Mediators of Inflammation, 2015, 2015, 1-14.	3.0	12
24	Identification of the Novel Interacting Partners of the Mammalian Target of Rapamycin Complex 1 in Human CCRF-CEM and HEK293 Cells. International Journal of Molecular Sciences, 2014, 15, 4823-4836.	4.1	7
25	Crosstalk between Edc4 and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in mRNA Decapping. International Journal of Molecular Sciences, 2014, 15, 23179-23195.	4.1	7
26	Use of Graft-Derived Cell-Free DNA as an Organ Integrity Biomarker to Reexamine Effective Tacrolimus Trough Concentrations After Liver Transplantation. Therapeutic Drug Monitoring, 2014, 36, 136-140.	2.0	44
27	Graft-Derived Cell-Free DNA as an Early Organ Integrity Biomarker After Transplantation of a Marginal HELLP Syndrome Donor Liver. Transplantation, 2014, 98, e43-e45.	1.0	31
28	Digital Droplet PCR for Rapid Quantification of Donor DNA in the Circulation of Transplant Recipients as a Potential Universal Biomarker of Graft Injury. Clinical Chemistry, 2013, 59, 1732-1741.	3.2	216
29	Liquid Chromatography–Tandem Mass Spectrometry or Automated Immunoassays: What Are the Future Trends in Therapeutic Drug Monitoring?. Clinical Chemistry, 2012, 58, 821-825.	3.2	56
30	Establishment of Thiopurine S-Methyltransferase Gene Knockdown in Jurkat T-lymphocytes. Therapeutic Drug Monitoring, 2012, 34, 584-592.	2.0	5
31	Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome. Proteome Science, 2011, 9, 71.	1.7	17
32	Biomarkers as a Tool for Management of Immunosuppression in Transplant Patients. Therapeutic Drug Monitoring, 2010, 32, 560-572.	2.0	54
33	Opportunities to Optimize Tacrolimus Therapy in Solid Organ Transplantation: Report of the European Consensus Conference. Therapeutic Drug Monitoring, 2009, 31, 139-152.	2.0	398
34	Proteome of Conidial Surface Associated Proteins ofAspergillusfumigatusReflecting Potential Vaccine Candidates and Allergens. Journal of Proteome Research, 2006, 5, 954-962.	3.7	113
35	Biomarkers. Therapeutic Drug Monitoring, 2006, 28, 35-38.	2.0	32
36	Mycophenolic Acid Interaction With Cyclosporine and Tacrolimus In Vitro and In Vivo. Therapeutic Drug Monitoring, 2005, 27, 123-131.	2.0	18

#	Article	IF	CITATIONS
37	Immunosuppressive drug monitoring of sirolimus and cyclosporine in pediatric patients. Clinical Biochemistry, 2004, 37, 424-428.	1.9	22
38	SYNERGISTIC EFFECTS OF SIROLIMUS WITH CYCLOSPORINE AND TACROLIMUS: ANALYSIS OF IMMUNOSUPPRESSION ON LYMPHOCYTE PROLIFERATION AND ACTIVATION IN RAT WHOLE BLOOD. Transplantation, 2004, 77, 1154-1162.	1.0	25
39	Two-Hour Cyclosporine Concentration Determination: An Appropriate Tool to Monitor Neoral Therapy?. Therapeutic Drug Monitoring, 2002, 24, 40-46.	2.0	78
40	Rapid Liquid Chromatography–Tandem Mass Spectrometry Routine Method for Simultaneous Determination of Sirolimus, Everolimus, Tacrolimus, and Cyclosporin A in Whole Blood. Clinical Chemistry, 2002, 48, 955-958.	3.2	188
41	The Pharmacokinetic-Pharmacodynamic Relationship for Total and Free Mycophenolic Acid in Pediatric Renal Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2002, 13, 759-768.	6.1	225