Gerard Karsenty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6823392/publications.pdf

Version: 2024-02-01

187 papers 45,751 citations

85 h-index 180 g-index

200 all docs

200 docs citations

times ranked

200

37127 citing authors

#	Article	IF	CITATIONS
1	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
2	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	5.8	15
3	Osteocalcin and the physiology of danger. FEBS Letters, 2022, 596, 665-680.	1.3	7
4	Embryonic osteocalcin signaling determines lifelong adrenal steroidogenesis and homeostasis in the mouse. Journal of Clinical Investigation, 2022, 132, .	3.9	16
5	Protein tyrosine phosphatase 1B regulates miR-208b-argonaute 2 association and thyroid hormone responsiveness in cardiac hypertrophy. Science Signaling, 2022, 15, eabn6875.	1.6	5
6	The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metabolism, 2022, 34, 805-817.	7.2	37
7	Adiponectin Promotes Maternal \hat{I}^2 -Cell Expansion Through Placental Lactogen Expression. Diabetes, 2021, 70, 132-142.	0.3	16
8	Osteoblastâ€specific deficiency of ectonucleotide pyrophosphatase or phosphodiesteraseâ€1 engenders insulin resistance in highâ€fat diet fed mice. Journal of Cellular Physiology, 2021, 236, 4614-4624.	2.0	16
9	Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Scientific Reports, 2021, 11, 3447.	1.6	8
10	Bone marrow runs the (bone) show. Journal of Experimental Medicine, 2021, 218, .	4.2	1
11	Transcriptional control of osteoblast differentiation and function. , 2020, , 163-176.		6
12	Regulation of energy metabolism by bone-derived hormones. , 2020, , 1931-1942.		2
13	Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism. Journal of Bone and Mineral Research, 2020, 35, 357-367.	3.1	59
14	PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biology, 2020, 18, 149.	1.7	13
15	The Central Regulation of Bone Mass: Genetic Evidence and Molecular Bases. Handbook of Experimental Pharmacology, 2020, 262, 309-323.	0.9	2
16	Interleukin-33 Induces the Enzyme Tryptophan Hydroxylase 1 to Promote Inflammatory Group 2 Innate Lymphoid Cell-Mediated Immunity. Immunity, 2020, 52, 606-619.e6.	6.6	76
17	The facts of the matter: What is a hormone?. PLoS Genetics, 2020, 16, e1008938.	1.5	9
18	Measurement of bioactive osteocalcin in humans using a novel immunoassay reveals association with glucose metabolism and \hat{l}^2 -cell function. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E381-E391.	1.8	25

#	Article	IF	CITATIONS
19	Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. Journal of Clinical Investigation, 2020, 130, 2888-2902.	3.9	75
20	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	1.4	32
21	Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 2019, 30, 890-902.e8.	7.2	110
22	Serotonin synthesis protects the mouse colonic crypt from DNA damage and colorectal tumorigenesis. Journal of Pathology, 2019, 249, 102-113.	2.1	26
23	Bone as an Endocrine Organ. , 2019, , 47-51.		0
24	Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568, 541-545.	13.7	313
25	Oligodendrocyte-specific ATF4 inactivation does not influence the development of EAE. Journal of Neuroinflammation, 2019, 16, 23.	3.1	21
26	Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis. JCI Insight, 2019, 4, .	2.3	16
27	MON-LB086 Single-Cell Transcriptional Profiling of Bone Cells Reveals Diversity of Osteoblasts. Journal of the Endocrine Society, 2019, 3, .	0.1	0
28	Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nature Reviews Endocrinology, 2018, 14, 174-182.	4.3	139
29	Molecular bases of the crosstalk between bone and muscle. Bone, 2018, 115, 43-49.	1.4	77
30	Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nature Communications, 2018, 9, 4824.	5.8	98
31	Merkel Cells Activate Sensory Neural Pathways through Adrenergic Synapses. Neuron, 2018, 100, 1401-1413.e6.	3.8	84
32	Generation of a highly efficient and tissue-specific tryptophan hydroxylase 1 knockout mouse model. Scientific Reports, 2018, 8, 17642.	1.6	9
33	The Cross Talk Between the Central Nervous System, Bone, and Energy Metabolism. , 2018, , 317-328.		1
34	Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6458-6463.	3.3	325
35	Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNÎ ³ signaling. Oncolmmunology, 2017, 6, e1321185.	2.1	24
36	Modulation of cognition and anxiety-like behavior by bone remodeling. Molecular Metabolism, 2017, 6, 1610-1615.	3.0	33

#	Article	IF	Citations
37	Osteocalcin and osteopontin influence bone morphology and mechanical properties. Annals of the New York Academy of Sciences, 2017, 1409, 79-84.	1.8	113
38	Gpr158 mediates osteocalcin's regulation of cognition. Journal of Experimental Medicine, 2017, 214, 2859-2873.	4.2	194
39	Update on the Biology of Osteocalcin. Endocrine Practice, 2017, 23, 1270-1274.	1.1	89
40	Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. Journal of Clinical Investigation, 2017, 127, 2612-2625.	3.9	37
41	Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell, 2016, 165, 882-895.	13.5	167
42	The Disappearance of a Renaissance Man: Paolo Bianco. Journal of Bone and Mineral Research, 2016, 31, 259-260.	3.1	0
43	Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Molecular Metabolism, 2016, 5, 1042-1047.	3.0	167
44	Regulation of Glucose Handling by the Skeleton: Insights From Mouse and Human Studies. Diabetes, 2016, 65, 3225-3232.	0.3	56
45	Smurf1 Inhibits Osteoblast Differentiation, Bone Formation, and Glucose Homeostasis through Serine 148. Cell Reports, 2016, 15, 27-35.	2.9	58
46	Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metabolism, 2016, 23, 1078-1092.	7.2	302
47	Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell, 2016, 164, 1248-1256.	13.5	198
48	Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell, 2015, 162, 1169.	13.5	5
49	Obstructive Sleep Apnea and Metabolic Bone Disease: Insights Into the Relationship Between Bone and Sleep. Journal of Bone and Mineral Research, 2015, 30, 199-211.	3.1	73
50	Histone demethylase JMJD3 is required for osteoblast differentiation in mice. Scientific Reports, 2015, 5, 13418.	1.6	31
51	DLK1 Regulates Whole-Body Glucose Metabolism: A Negative Feedback Regulation of the Osteocalcin-Insulin Loop. Diabetes, 2015, 64, 3069-3080.	0.3	41
52	Functional Role of Serotonin in Insulin Secretion in a Diet-Induced Insulin-Resistant State. Endocrinology, 2015, 156, 444-452.	1.4	106
53	The class II histone deacetylase HDAC4 regulates cognitive, metabolic and endocrine functions through its expression in osteoblasts. Molecular Metabolism, 2015, 4, 64-69.	3.0	19
54	An overview of the metabolic functions of osteocalcin. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 93-98.	2.6	142

#	Article	IF	Citations
55	JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice. Journal of Molecular Cell Biology, 2015, 7, 23-34.	1.5	66
56	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	13.5	535
57	Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell, 2015, 161, 1576-1591.	13.5	351
58	Searching for additional endocrine functions of the skeleton: genetic approaches and implications for therapeutics. Expert Review of Endocrinology and Metabolism, 2015, 10, 413-424.	1.2	3
59	Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature Communications, 2015, 6, 6794.	5.8	187
60	GGCX and VKORC1 inhibit osteocalcin endocrine functions. Journal of Cell Biology, 2015, 208, 761-776.	2.3	58
61	An Overview of the Metabolic Functions of Osteocalcin. Current Osteoporosis Reports, 2015, 13, 180-185.	1.5	55
62	Re-tuning bone formation. Journal of Experimental Medicine, 2015, 212, 3-3.	4.2	1
63	Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. Journal of Clinical Investigation, 2014, 124, 1781-1793.	3.9	213
64	Broadening the Role of Osteocalcin in Leydig Cells. Endocrinology, 2014, 155, 4115-4116.	1.4	4
65	FGF-21 and Skeletal Remodeling During and After Lactation in C57BL/6J Mice. Endocrinology, 2014, 155, 3516-3526.	1.4	56
66	Bone as an Endocrine Organ., 2014, , 193-205.		3
67	Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system inÂvivo. Molecular Metabolism, 2014, 3, 770-777.	3.0	13
68	Osteocalcin Promotes \hat{l}^2 -Cell Proliferation During Development and Adulthood Through Gprc6a. Diabetes, 2014, 63, 1021-1031.	0.3	199
69	Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nature Medicine, 2014, 20, 1228-1229.	15.2	31
70	HDAC4 integrates PTH and sympathetic signaling in osteoblasts. Journal of Cell Biology, 2014, 205, 771-780.	2.3	50
71	Tsc2 Is a Molecular Checkpoint Controlling Osteoblast Development and Glucose Homeostasis. Molecular and Cellular Biology, 2014, 34, 1850-1862.	1.1	52
72	Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1. Cell Metabolism, 2014, 19, 891.	7.2	1

#	Article	IF	CITATIONS
73	Regulation of male fertility by the bone-derived hormone osteocalcin. Molecular and Cellular Endocrinology, 2014, 382, 521-526.	1.6	87
74	Deficiency of the bone mineralization inhibitor NPP1 protects against obesity and diabetes. DMM Disease Models and Mechanisms, 2014, 7, 1341-50.	1.2	21
75	Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. Journal of Clinical Investigation, 2014, 124, 5522-5522.	3.9	0
76	Inhibition of Leptin Regulation of Parasympathetic Signaling as a Cause of Extreme Body Weight-Associated Asthma. Cell Metabolism, 2013, 17, 463-464.	7.2	1
77	Energy Homeostasis and Neuronal Regulation of Bone Remodeling. , 2013, , 69-80.		1
78	Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions. Cell, 2013, 155, 228-241.	13.5	348
79	The transcription factor early Bâ€cell factor 1 regulates bone formation in an osteoblastâ€nonautonomous manner. FEBS Letters, 2013, 587, 711-716.	1.3	10
80	In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Molecular Metabolism, 2013, 2, 498-504.	3.0	73
81	Vitamin D Receptor in Osteoblasts Is a Negative Regulator of Bone Mass Control. Endocrinology, 2013, 154, 1008-1020.	1.4	139
82	Inhibition of Leptin Regulation of Parasympathetic Signaling as a Cause of Extreme Body Weight-Associated Asthma. Cell Metabolism, 2013, 17, 35-48.	7.2	83
83	Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1. Cell Metabolism, 2013, 17, 901-915.	7.2	198
84	Developmental androgen excess disrupts reproduction and energy homeostasis in adult male mice. Journal of Endocrinology, 2013, 219, 259-268.	1.2	25
85	Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1321-E1330.	1.8	60
86	Time- and age-dependent effects of serotonin on gasping and autoresuscitation in neonatal mice. Journal of Applied Physiology, 2013, 114, 1668-1676.	1.2	26
87	MAML1 Enhances the Transcriptional Activity of Runx2 and Plays a Role in Bone Development. PLoS Genetics, 2013, 9, e1003132.	1.5	24
88	Regulation of lysosome biogenesis and functions in osteoclasts. Cell Cycle, 2013, 12, 2744-2752.	1.3	72
89	A RANKL–PKCβ–TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes and Development, 2013, 27, 955-969.	2.7	149
90	Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. Journal of Clinical Investigation, 2013, 123, 2421-2433.	3.9	233

#	Article	IF	CITATIONS
91	An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. Journal of Bone and Mineral Research, 2013, 28, 2064-2069.	3.1	145
92	miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. Journal of Cell Biology, 2012, 197, 509-521.	2.3	215
93	T-Cell Protein Tyrosine Phosphatase Regulates Bone Resorption and Whole-Body Insulin Sensitivity through Its Expression in Osteoblasts. Molecular and Cellular Biology, 2012, 32, 1080-1088.	1.1	31
94	The mutual dependence between bone and gonads. Journal of Endocrinology, 2012, 213, 107-114.	1.2	66
95	Anabolic action of parathyroid hormone regulated by the \hat{l}^2 ₂ -adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7433-7438.	3.3	61
96	Tribute to L. J. Henderson, a remarkable physiologist, and the founder of the American School of Sociology (1878-1942). American Journal of Physiology - Cell Physiology, 2012, 303, C1001-C1003.	2.1	3
97	Gut-Derived Serotonin Is a Multifunctional Determinant to Fasting Adaptation. Cell Metabolism, 2012, 16, 588-600.	7.2	173
98	A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO Journal, 2012, 31, 1095-1108.	3.5	1,507
99	Sulfatases are determinants of alveolar formation. Matrix Biology, 2012, 31, 253-260.	1.5	11
100	Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone, 2012, 50, 568-575.	1.4	359
101	Foreword: Interactions between bone and adipose tissue and metabolism. Bone, 2012, 50, 429.	1.4	10
102	Cross-talk between Insulin and Wnt Signaling in Preadipocytes. Journal of Biological Chemistry, 2012, 287, 12016-12026.	1.6	90
103	The contribution of bone to whole-organism physiology. Nature, 2012, 481, 314-320.	13.7	430
104	Biology Without Walls: The Novel Endocrinology of Bone. Annual Review of Physiology, 2012, 74, 87-105.	5.6	115
105	miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. Journal of Experimental Medicine, 2012, 209, i10-i10.	4.2	0
106	The Importance of the Gastrointestinal Tract in the Control of Bone Mass Accrual. Gastroenterology, 2011, 141, 439-442.	0.6	22
107	Regulation of Bone Mass by Serotonin: Molecular Biology and Therapeutic Implications. Annual Review of Medicine, 2011, 62, 323-331.	5.0	70
108	Endocrine Regulation of Male Fertility by the Skeleton. Cell, 2011, 144, 796-809.	13.5	542

#	Article	IF	Citations
109	Bone endocrine regulation of energy metabolism and male reproduction. Comptes Rendus - Biologies, 2011, 334, 720-724.	0.1	28
110	Towards a serotonin-dependent leptin roadmap in the brain. Trends in Endocrinology and Metabolism, 2011, 22, 382-387.	3.1	45
111	The osteoblast: An insulin target cell controlling glucose homeostasis. Journal of Bone and Mineral Research, 2011, 26, 677-680.	3.1	237
112	Efficacy of serotonin inhibition in mouse models of bone loss. Journal of Bone and Mineral Research, 2011, 26, 2002-2011.	3.1	61
113	Sympathetic control of bone mass regulated by osteopontin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17767-17772.	3.3	70
114	Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. Journal of Experimental Medicine, 2011, 208, 41-52.	4.2	78
115	Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. Journal of Experimental Medicine, 2011, 208, 841-851.	4.2	148
116	Patients with high-bone-mass phenotype owing to <i>Lrp5-T253I</i> mutation have low plasma levels of serotonin. Journal of Bone and Mineral Research, 2010, 25, 673-675.	3.1	51
117	Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nature Medicine, 2010, 16, 308-312.	15.2	273
118	CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes and Development, 2010, 24, 2330-2342.	2.7	105
119	The Central Regulation of Bone Mass, The First Link between Bone Remodeling and Energy Metabolism. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4795-4801.	1.8	140
120	An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochemical and Biophysical Research Communications, 2010, 397, 691-696.	1.0	100
121	Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell, 2010, 142, 296-308.	13.5	957
122	Signaling through the M3 Muscarinic Receptor Favors Bone Mass Accrual by Decreasing Sympathetic Activity. Cell Metabolism, 2010, 11, 231-238.	7.2	95
123	FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. Journal of Clinical Investigation, 2010, 120, 357-368.	3.9	196
124	The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. Journal of Clinical Investigation, 2009, 119, 2807-2817.	3.9	193
125	A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 2009, 138, 976-989.	13.5	565
126	Genetic Control of Bone Formation. Annual Review of Cell and Developmental Biology, 2009, 25, 629-648.	4.0	569

#	Article	IF	CITATIONS
127	Leptin-dependent co-regulation of bone and energy metabolism. Aging, 2009, 1, 954-956.	1.4	23
128	Transcriptional Control of Skeletogenesis. Annual Review of Genomics and Human Genetics, 2008, 9, 183-196.	2.5	337
129	Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell, 2008, 135, 825-837.	13.5	751
130	Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20529-20533.	3.3	131
131	Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes and Development, 2008, 22, 2645-2650.	2.7	86
132	Osteocalcin differentially regulates \hat{l}^2 cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5266-5270.	3.3	819
133	The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. Journal of Cell Biology, 2008, 183, 1235-1242.	2.3	234
134	Cocaine and Amphetamine-Regulated Transcript May Regulate Bone Remodeling as a Circulating Molecule. Endocrinology, 2008, 149, 3933-3941.	1.4	45
135	Genetic Control of Skeletal Development. Novartis Foundation Symposium, 2008, , 6-22.	1.2	11
136	FGFR3 Associates with and Tyrosine-Phosphorylates p90RSK2, Leading to RSK2 Activation That Mediates Hematopoietic Transformation. Blood, 2008, 112, 3722-3722.	0.6	1
137	Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 2007, 130, 456-469.	13.5	2,151
138	SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation. Cell, 2006, 125, 971-986.	13.5	458
139	Convergence between bone and energy homeostases: Leptin regulation of bone mass. Cell Metabolism, 2006, 4, 341-348.	7.2	366
140	ATF4 mediation of NF1 functions in osteoblast revealsÂa nutritional basis for congenital skeletal dysplasiae. Cell Metabolism, 2006, 4, 441-451.	7.2	204
141	Calcineurin/NFAT Signaling in Osteoblasts Regulates Bone Mass. Developmental Cell, 2006, 10, 771-782.	3.1	313
142	Cart Overexpression Is the Only Identifiable Cause of High Bone Mass in Melanocortin 4 Receptor Deficiency. Endocrinology, 2006, 147, 3196-3202.	1.4	88
143	Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes and Development, 2006, 20, 2937-2942.	2.7	145
144	Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 2005, 434, 514-520.	13.7	1,105

#	Article	IF	Citations
145	An Aggrecanase and Osteoarthritis. New England Journal of Medicine, 2005, 353, 522-523.	13.9	28
146	Unloading Induces Osteoblastic Cell Suppression and Osteoclastic Cell Activation to Lead to Bone Loss via Sympathetic Nervous System. Journal of Biological Chemistry, 2005, 280, 30192-30200.	1.6	173
147	Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes and Development, 2005, 19, 1093-1104.	2.7	535
148	The Molecular Clock Mediates Leptin-Regulated Bone Formation. Cell, 2005, 122, 803-815.	13.5	522
149	Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation. Developmental Cell, 2005, 8, 751-764.	3.1	1,402
150	Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. Journal of Cell Biology, 2004, 165, 625-630.	2.3	448
151	Histone Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis. Cell, 2004, 119, 555-566.	13.5	710
152	Groucho homologue Grg5 interacts with the transcription factor Runx2–Cbfa1 and modulates its activity during postnatal growth in mice. Developmental Biology, 2004, 270, 364-381.	0.9	64
153	A Twist Code Determines the Onset of Osteoblast Differentiation. Developmental Cell, 2004, 6, 423-435.	3.1	619
154	ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology. Cell, 2004, 117, 387-398.	13.5	749
155	The complexities of skeletal biology. Nature, 2003, 423, 316-318.	13.7	383
156	Monosodium Glutamate-Sensitive Hypothalamic Neurons Contribute to the Control of Bone Mass. Endocrinology, 2003, 144, 3842-3847.	1.4	60
157	Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. Journal of Cell Biology, 2003, 162, 139-148.	2.3	212
158	Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes and Development, 2003, 17, 1979-1991.	2.7	235
159	COMMONENDOCRINECONTROL OFBODYWEIGHT, REPRODUCTION, ANDBONEMASS. Annual Review of Nutrition, 2003, 23, 403-411.	4.3	60
160	Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. Journal of Cell Biology, 2002, 157, 303-314.	2.3	1,032
161	Leptin Regulates Bone Formation via the Sympathetic Nervous System. Cell, 2002, 111, 305-317.	13.5	1,530
162	Reaching a Genetic and Molecular Understanding of Skeletal Development. Developmental Cell, 2002, 2, 389-406.	3.1	1,309

#	Article	IF	CITATIONS
163	Mouse ?1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Developmental Dynamics, 2002, 224, 245-251.	0.8	282
164	PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development (Cambridge), 2002, 129, 2977-2986.	1.2	272
165	Central control of bone formation. Journal of Bone and Mineral Metabolism, 2001, 19, 195-198.	1.3	82
166	Cbfa1 Contributes to the Osteoblast-specific Expression of type I collagen Genes. Journal of Biological Chemistry, 2001, 276, 7101-7107.	1.6	297
167	Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes and Development, 2001, 15, 467-481.	2.7	485
168	A neuro (endo)crine regulation of bone remodeling. BioEssays, 2000, 22, 970-975.	1.2	60
169	Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature, 2000, 406, 199-203.	13.7	366
170	Vascular calcificationâ€"a passive process in need of inhibitors. Nephrology Dialysis Transplantation, 2000, 15, 1272-1274.	0.4	92
171	Leptin Inhibits Bone Formation through a Hypothalamic Relay. Cell, 2000, 100, 197-207.	13.5	1,935
172	The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science, 2000, 289, 1501-1504.	6.0	972
172 173	The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science, 2000, 289, 1501-1504. Extracellular matrix calcification: where is the action?. Nature Genetics, 1999, 21, 150-151.	6.0 9.4	972
173	Extracellular matrix calcification: where is the action?. Nature Genetics, 1999, 21, 150-151.	9.4	131
173 174	Extracellular matrix calcification: where is the action?. Nature Genetics, 1999, 21, 150-151. Genetics of skeletogenesis. Genesis, 1998, 22, 301-313.	9.4	131 86
173 174 175	Extracellular matrix calcification: where is the action?. Nature Genetics, 1999, 21, 150-151. Genetics of skeletogenesis. Genesis, 1998, 22, 301-313. Skeletal abnormalities in doubly heterozygousBmp4 andBmp7 mice., 1998, 22, 340-348.	9.4	131 86 113
173 174 175 176	Extracellular matrix calcification: where is the action? Nature Genetics, 1999, 21, 150-151. Genetics of skeletogenesis. Genesis, 1998, 22, 301-313. Skeletal abnormalities in doubly heterozygousBmp4 andBmp7 mice., 1998, 22, 340-348. Genetics of skeletogenesis., 1998, 22, 301.	9.4	131 86 113 2
173 174 175 176	Extracellular matrix calcification: where is the action?. Nature Genetics, 1999, 21, 150-151. Genetics of skeletogenesis. Genesis, 1998, 22, 301-313. Skeletal abnormalities in doubly heterozygousBmp4 andBmp7 mice., 1998, 22, 340-348. Genetics of skeletogenesis., 1998, 22, 301. Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell, 1997, 89, 747-754. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor	9.4 3.1	131 86 113 2 3,935

#	Article	IF	Citations
181	Increased bone formation in osteocalcin-deficient mice. Nature, 1996, 382, 448-452.	13.7	1,522
182	Study of Osteoblast-Specific Expression of One Mouse Osteocalcin Gene: Characterization of the Factor Binding to OSE2. Connective Tissue Research, 1996, 35, 7-14.	1.1	32
183	Osteocalcin cluster: Implications for functional studies. Journal of Cellular Biochemistry, 1995, 57, 379-383.	1.2	46
184	Regulation of Type I Collagen Genes Expression. International Reviews of Immunology, 1995, 12, 177-185.	1.5	133
185	A PEBP2α/AML-1-related Factor Increases Osteocalcin Promoter Activity through Its Binding to an Osteoblast-specific cis-Acting Element. Journal of Biological Chemistry, 1995, 270, 30973-30979.	1.6	164
186	The matrix Gla protein gene is a marker of the chondrogenesis cell lineage during mouse development. Journal of Bone and Mineral Research, 1995, 10, 325-334.	3.1	123
187	Chapter 10. Neuronal Regulation of Bone Remodeling. , 0, , 56-60.		5