Gerard Karsenty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6823392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell, 1997, 89, 747-754.	13.5	3,935
2	Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 2007, 130, 456-469.	13.5	2,151
3	Leptin Inhibits Bone Formation through a Hypothalamic Relay. Cell, 2000, 100, 197-207.	13.5	1,935
4	Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 1997, 386, 78-81.	13.7	1,895
5	Leptin Regulates Bone Formation via the Sympathetic Nervous System. Cell, 2002, 111, 305-317.	13.5	1,530
6	Increased bone formation in osteocalcin-deficient mice. Nature, 1996, 382, 448-452.	13.7	1,522
7	A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO Journal, 2012, 31, 1095-1108.	3.5	1,507
8	Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation. Developmental Cell, 2005, 8, 751-764.	3.1	1,402
9	Reaching a Genetic and Molecular Understanding of Skeletal Development. Developmental Cell, 2002, 2, 389-406.	3.1	1,309
10	Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 2005, 434, 514-520.	13.7	1,105
11	Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. Journal of Cell Biology, 2002, 157, 303-314.	2.3	1,032
12	The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science, 2000, 289, 1501-1504.	6.0	972
13	Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell, 2010, 142, 296-308.	13.5	957
14	Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5266-5270.	3.3	819
15	Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell, 2008, 135, 825-837.	13.5	751
16	ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology. Cell, 2004, 117, 387-398.	13.5	749
17	Histone Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis. Cell, 2004, 119, 555-566.	13.5	710
18	A Twist Code Determines the Onset of Osteoblast Differentiation. Developmental Cell, 2004, 6, 423-435.	3.1	619

#	Article	IF	CITATIONS
19	Genetic Control of Bone Formation. Annual Review of Cell and Developmental Biology, 2009, 25, 629-648.	4.0	569
20	A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 2009, 138, 976-989.	13.5	565
21	Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genetics, 1997, 16, 307-310.	9.4	548
22	Endocrine Regulation of Male Fertility by the Skeleton. Cell, 2011, 144, 796-809.	13.5	542
23	Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes and Development, 2005, 19, 1093-1104.	2.7	535
24	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	13.5	535
25	The Molecular Clock Mediates Leptin-Regulated Bone Formation. Cell, 2005, 122, 803-815.	13.5	522
26	Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes and Development, 2001, 15, 467-481.	2.7	485
27	SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation. Cell, 2006, 125, 971-986.	13.5	458
28	Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. Journal of Cell Biology, 2004, 165, 625-630.	2.3	448
29	The contribution of bone to whole-organism physiology. Nature, 2012, 481, 314-320.	13.7	430
30	The complexities of skeletal biology. Nature, 2003, 423, 316-318.	13.7	383
31	Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature, 2000, 406, 199-203.	13.7	366
32	Convergence between bone and energy homeostases: Leptin regulation of bone mass. Cell Metabolism, 2006, 4, 341-348.	7.2	366
33	Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone, 2012, 50, 568-575.	1.4	359
34	Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell, 2015, 161, 1576-1591.	13.5	351
35	Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions. Cell, 2013, 155, 228-241.	13.5	348
36	Transcriptional Control of Skeletogenesis. Annual Review of Genomics and Human Genetics, 2008, 9, 183-196.	2.5	337

#	Article	IF	CITATIONS
37	Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6458-6463.	3.3	325
38	Calcineurin/NFAT Signaling in Osteoblasts Regulates Bone Mass. Developmental Cell, 2006, 10, 771-782.	3.1	313
39	Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568, 541-545.	13.7	313
40	Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metabolism, 2016, 23, 1078-1092.	7.2	302
41	Cbfa1 Contributes to the Osteoblast-specific Expression of type I collagen Genes. Journal of Biological Chemistry, 2001, 276, 7101-7107.	1.6	297
42	Mouse ?1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Developmental Dynamics, 2002, 224, 245-251.	0.8	282
43	Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nature Medicine, 2010, 16, 308-312.	15.2	273
44	PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development (Cambridge), 2002, 129, 2977-2986.	1.2	272
45	The osteoblast: An insulin target cell controlling glucose homeostasis. Journal of Bone and Mineral Research, 2011, 26, 677-680.	3.1	237
46	Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes and Development, 2003, 17, 1979-1991.	2.7	235
47	The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. Journal of Cell Biology, 2008, 183, 1235-1242.	2.3	234
48	Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. Journal of Clinical Investigation, 2013, 123, 2421-2433.	3.9	233
49	miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. Journal of Cell Biology, 2012, 197, 509-521.	2.3	215
50	Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. Journal of Clinical Investigation, 2014, 124, 1781-1793.	3.9	213
51	Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. Journal of Cell Biology, 2003, 162, 139-148.	2.3	212
52	ATF4 mediation of NF1 functions in osteoblast revealsÂa nutritional basis for congenital skeletal dysplasiae. Cell Metabolism, 2006, 4, 441-451.	7.2	204
53	Osteocalcin Promotes β-Cell Proliferation During Development and Adulthood Through Gprc6a. Diabetes, 2014, 63, 1021-1031.	0.3	199
54	Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1. Cell Metabolism, 2013, 17, 901-915.	7.2	198

#	Article	IF	CITATIONS
55	Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell, 2016, 164, 1248-1256.	13.5	198
56	FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. Journal of Clinical Investigation, 2010, 120, 357-368.	3.9	196
57	Gpr158 mediates osteocalcin's regulation of cognition. Journal of Experimental Medicine, 2017, 214, 2859-2873.	4.2	194
58	The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. Journal of Clinical Investigation, 2009, 119, 2807-2817.	3.9	193
59	Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature Communications, 2015, 6, 6794.	5.8	187
60	Unloading Induces Osteoblastic Cell Suppression and Osteoclastic Cell Activation to Lead to Bone Loss via Sympathetic Nervous System. Journal of Biological Chemistry, 2005, 280, 30192-30200.	1.6	173
61	Gut-Derived Serotonin Is a Multifunctional Determinant to Fasting Adaptation. Cell Metabolism, 2012, 16, 588-600.	7.2	173
62	Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell, 2016, 165, 882-895.	13.5	167
63	Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Molecular Metabolism, 2016, 5, 1042-1047.	3.0	167
64	A PEBP2α/AML-1-related Factor Increases Osteocalcin Promoter Activity through Its Binding to an Osteoblast-specific cis-Acting Element. Journal of Biological Chemistry, 1995, 270, 30973-30979.	1.6	164
65	A RANKL–PKCβ–TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes and Development, 2013, 27, 955-969.	2.7	149
66	Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. Journal of Experimental Medicine, 2011, 208, 841-851.	4.2	148
67	Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes and Development, 2006, 20, 2937-2942.	2.7	145
68	An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. Journal of Bone and Mineral Research, 2013, 28, 2064-2069.	3.1	145
69	An overview of the metabolic functions of osteocalcin. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 93-98.	2.6	142
70	The Central Regulation of Bone Mass, The First Link between Bone Remodeling and Energy Metabolism. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4795-4801.	1.8	140
71	Vitamin D Receptor in Osteoblasts Is a Negative Regulator of Bone Mass Control. Endocrinology, 2013, 154, 1008-1020.	1.4	139
72	Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nature Reviews Endocrinology, 2018, 14, 174-182.	4.3	139

#	Article	IF	CITATIONS
73	Regulation of Type I Collagen Genes Expression. International Reviews of Immunology, 1995, 12, 177-185.	1.5	133
74	Extracellular matrix calcification: where is the action?. Nature Genetics, 1999, 21, 150-151.	9.4	131
75	Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20529-20533.	3.3	131
76	The matrix Gla protein gene is a marker of the chondrogenesis cell lineage during mouse development. Journal of Bone and Mineral Research, 1995, 10, 325-334.	3.1	123
77	Biology Without Walls: The Novel Endocrinology of Bone. Annual Review of Physiology, 2012, 74, 87-105.	5.6	115
78	Skeletal abnormalities in doubly heterozygousBmp4 andBmp7 mice. , 1998, 22, 340-348.		113
79	Osteocalcin and osteopontin influence bone morphology and mechanical properties. Annals of the New York Academy of Sciences, 2017, 1409, 79-84.	1.8	113
80	Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 2019, 30, 890-902.e8.	7.2	110
81	Functional Role of Serotonin in Insulin Secretion in a Diet-Induced Insulin-Resistant State. Endocrinology, 2015, 156, 444-452.	1.4	106
82	CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes and Development, 2010, 24, 2330-2342.	2.7	105
83	An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochemical and Biophysical Research Communications, 2010, 397, 691-696.	1.0	100
84	Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nature Communications, 2018, 9, 4824.	5.8	98
85	Signaling through the M3 Muscarinic Receptor Favors Bone Mass Accrual by Decreasing Sympathetic Activity. Cell Metabolism, 2010, 11, 231-238.	7.2	95
86	Vascular calcification—a passive process in need of inhibitors. Nephrology Dialysis Transplantation, 2000, 15, 1272-1274.	0.4	92
87	Cross-talk between Insulin and Wnt Signaling in Preadipocytes. Journal of Biological Chemistry, 2012, 287, 12016-12026.	1.6	90
88	Update on the Biology of Osteocalcin. Endocrine Practice, 2017, 23, 1270-1274.	1.1	89
89	Cart Overexpression Is the Only Identifiable Cause of High Bone Mass in Melanocortin 4 Receptor Deficiency. Endocrinology, 2006, 147, 3196-3202.	1.4	88
90	Regulation of male fertility by the bone-derived hormone osteocalcin. Molecular and Cellular Endocrinology, 2014, 382, 521-526.	1.6	87

#	Article	IF	CITATIONS
91	Genetics of skeletogenesis. Genesis, 1998, 22, 301-313.	3.1	86
92	Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes and Development, 2008, 22, 2645-2650.	2.7	86
93	Merkel Cells Activate Sensory Neural Pathways through Adrenergic Synapses. Neuron, 2018, 100, 1401-1413.e6.	3.8	84
94	Inhibition of Leptin Regulation of Parasympathetic Signaling as a Cause of Extreme Body Weight-Associated Asthma. Cell Metabolism, 2013, 17, 35-48.	7.2	83
95	Central control of bone formation. Journal of Bone and Mineral Metabolism, 2001, 19, 195-198.	1.3	82
96	Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. Journal of Experimental Medicine, 2011, 208, 41-52.	4.2	78
97	Molecular bases of the crosstalk between bone and muscle. Bone, 2018, 115, 43-49.	1.4	77
98	Interleukin-33 Induces the Enzyme Tryptophan Hydroxylase 1 to Promote Inflammatory Group 2 Innate Lymphoid Cell-Mediated Immunity. Immunity, 2020, 52, 606-619.e6.	6.6	76
99	Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. Journal of Clinical Investigation, 2020, 130, 2888-2902.	3.9	75
100	In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Molecular Metabolism, 2013, 2, 498-504.	3.0	73
101	Obstructive Sleep Apnea and Metabolic Bone Disease: Insights Into the Relationship Between Bone and Sleep. Journal of Bone and Mineral Research, 2015, 30, 199-211.	3.1	73
102	Regulation of lysosome biogenesis and functions in osteoclasts. Cell Cycle, 2013, 12, 2744-2752.	1.3	72
103	Regulation of Bone Mass by Serotonin: Molecular Biology and Therapeutic Implications. Annual Review of Medicine, 2011, 62, 323-331.	5.0	70
104	Sympathetic control of bone mass regulated by osteopontin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17767-17772.	3.3	70
105	The mutual dependence between bone and gonads. Journal of Endocrinology, 2012, 213, 107-114.	1.2	66
106	JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice. Journal of Molecular Cell Biology, 2015, 7, 23-34.	1.5	66
107	Groucho homologue Grg5 interacts with the transcription factor Runx2–Cbfa1 and modulates its activity during postnatal growth in mice. Developmental Biology, 2004, 270, 364-381.	0.9	64
108	Efficacy of serotonin inhibition in mouse models of bone loss. Journal of Bone and Mineral Research, 2011, 26, 2002-2011.	3.1	61

#	Article	IF	CITATIONS
109	Anabolic action of parathyroid hormone regulated by the β ₂ -adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7433-7438.	3.3	61
110	A neuro (endo)crine regulation of bone remodeling. BioEssays, 2000, 22, 970-975.	1.2	60
111	Monosodium Glutamate-Sensitive Hypothalamic Neurons Contribute to the Control of Bone Mass. Endocrinology, 2003, 144, 3842-3847.	1.4	60
112	COMMONENDOCRINECONTROL OFBODYWEIGHT, REPRODUCTION, ANDBONEMASS. Annual Review of Nutrition, 2003, 23, 403-411.	4.3	60
113	Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1321-E1330.	1.8	60
114	Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism. Journal of Bone and Mineral Research, 2020, 35, 357-367.	3.1	59
115	GGCX and VKORC1 inhibit osteocalcin endocrine functions. Journal of Cell Biology, 2015, 208, 761-776.	2.3	58
116	Smurf1 Inhibits Osteoblast Differentiation, Bone Formation, and Glucose Homeostasis through Serine 148. Cell Reports, 2016, 15, 27-35.	2.9	58
117	FGF-21 and Skeletal Remodeling During and After Lactation in C57BL/6J Mice. Endocrinology, 2014, 155, 3516-3526.	1.4	56
118	Regulation of Glucose Handling by the Skeleton: Insights From Mouse and Human Studies. Diabetes, 2016, 65, 3225-3232.	0.3	56
119	An Overview of the Metabolic Functions of Osteocalcin. Current Osteoporosis Reports, 2015, 13, 180-185.	1.5	55
120	Tsc2 Is a Molecular Checkpoint Controlling Osteoblast Development and Glucose Homeostasis. Molecular and Cellular Biology, 2014, 34, 1850-1862.	1.1	52
121	Analysis of limb patterning in BMP-7-deficient mice. Genesis, 1996, 19, 43-50.	3.1	51
122	Patients with high-bone-mass phenotype owing to <i>Lrp5-T253I</i> mutation have low plasma levels of serotonin. Journal of Bone and Mineral Research, 2010, 25, 673-675.	3.1	51
123	HDAC4 integrates PTH and sympathetic signaling in osteoblasts. Journal of Cell Biology, 2014, 205, 771-780.	2.3	50
124	Osteocalcin cluster: Implications for functional studies. Journal of Cellular Biochemistry, 1995, 57, 379-383.	1.2	46
125	Cocaine and Amphetamine-Regulated Transcript May Regulate Bone Remodeling as a Circulating Molecule. Endocrinology, 2008, 149, 3933-3941.	1.4	45
126	Towards a serotonin-dependent leptin roadmap in the brain. Trends in Endocrinology and Metabolism, 2011, 22, 382-387.	3.1	45

8

#	Article	IF	CITATIONS
127	DLK1 Regulates Whole-Body Glucose Metabolism: A Negative Feedback Regulation of the Osteocalcin-Insulin Loop. Diabetes, 2015, 64, 3069-3080.	0.3	41
128	Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. Journal of Clinical Investigation, 2017, 127, 2612-2625.	3.9	37
129	The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metabolism, 2022, 34, 805-817.	7.2	37
130	Modulation of cognition and anxiety-like behavior by bone remodeling. Molecular Metabolism, 2017, 6, 1610-1615.	3.0	33
131	Study of Osteoblast-Specific Expression of One Mouse Osteocalcin Gene: Characterization of the Factor Binding to OSE2. Connective Tissue Research, 1996, 35, 7-14.	1.1	32
132	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	1.4	32
133	T-Cell Protein Tyrosine Phosphatase Regulates Bone Resorption and Whole-Body Insulin Sensitivity through Its Expression in Osteoblasts. Molecular and Cellular Biology, 2012, 32, 1080-1088.	1.1	31
134	Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nature Medicine, 2014, 20, 1228-1229.	15.2	31
135	Histone demethylase JMJD3 is required for osteoblast differentiation in mice. Scientific Reports, 2015, 5, 13418.	1.6	31
136	An Aggrecanase and Osteoarthritis. New England Journal of Medicine, 2005, 353, 522-523.	13.9	28
137	Bone endocrine regulation of energy metabolism and male reproduction. Comptes Rendus - Biologies, 2011, 334, 720-724.	0.1	28
138	Time- and age-dependent effects of serotonin on gasping and autoresuscitation in neonatal mice. Journal of Applied Physiology, 2013, 114, 1668-1676.	1.2	26
139	Serotonin synthesis protects the mouse colonic crypt from DNA damage and colorectal tumorigenesis. Journal of Pathology, 2019, 249, 102-113.	2.1	26
140	Developmental androgen excess disrupts reproduction and energy homeostasis in adult male mice. Journal of Endocrinology, 2013, 219, 259-268.	1.2	25
141	Measurement of bioactive osteocalcin in humans using a novel immunoassay reveals association with glucose metabolism and β-cell function. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E381-E391.	1.8	25
142	MAML1 Enhances the Transcriptional Activity of Runx2 and Plays a Role in Bone Development. PLoS Genetics, 2013, 9, e1003132.	1.5	24
143	Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNÎ ³ signaling. Oncolmmunology, 2017, 6, e1321185.	2.1	24
144	Leptin-dependent co-regulation of bone and energy metabolism. Aging, 2009, 1, 954-956.	1.4	23

#	Article	IF	CITATIONS
145	The Importance of the Gastrointestinal Tract in the Control of Bone Mass Accrual. Gastroenterology, 2011, 141, 439-442.	0.6	22
146	Deficiency of the bone mineralization inhibitor NPP1 protects against obesity and diabetes. DMM Disease Models and Mechanisms, 2014, 7, 1341-50.	1.2	21
147	Oligodendrocyte-specific ATF4 inactivation does not influence the development of EAE. Journal of Neuroinflammation, 2019, 16, 23.	3.1	21
148	The class II histone deacetylase HDAC4 regulates cognitive, metabolic and endocrine functions through its expression in osteoblasts. Molecular Metabolism, 2015, 4, 64-69.	3.0	19
149	Adiponectin Promotes Maternal β-Cell Expansion Through Placental Lactogen Expression. Diabetes, 2021, 70, 132-142.	0.3	16
150	Osteoblastâ€specific deficiency of ectonucleotide pyrophosphatase or phosphodiesteraseâ€1 engenders insulin resistance in highâ€fat diet fed mice. Journal of Cellular Physiology, 2021, 236, 4614-4624.	2.0	16
151	Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis. JCI Insight, 2019, 4, .	2.3	16
152	Embryonic osteocalcin signaling determines lifelong adrenal steroidogenesis and homeostasis in the mouse. Journal of Clinical Investigation, 2022, 132, .	3.9	16
153	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	5.8	15
154	Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system inÂvivo. Molecular Metabolism, 2014, 3, 770-777.	3.0	13
155	PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biology, 2020, 18, 149.	1.7	13
156	Genetic Control of Skeletal Development. Novartis Foundation Symposium, 2008, , 6-22.	1.2	11
157	Sulfatases are determinants of alveolar formation. Matrix Biology, 2012, 31, 253-260.	1.5	11
158	Foreword: Interactions between bone and adipose tissue and metabolism. Bone, 2012, 50, 429.	1.4	10
159	The transcription factor early Bâ€cell factor 1 regulates bone formation in an osteoblastâ€nonautonomous manner. FEBS Letters, 2013, 587, 711-716.	1.3	10
160	Generation of a highly efficient and tissue-specific tryptophan hydroxylase 1 knockout mouse model. Scientific Reports, 2018, 8, 17642.	1.6	9
161	The facts of the matter: What is a hormone?. PLoS Genetics, 2020, 16, e1008938.	1.5	9
162	Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Scientific Reports, 2021, 11, 3447.	1.6	8

1

#	Article	IF	CITATIONS
163	Osteocalcin and the physiology of danger. FEBS Letters, 2022, 596, 665-680.	1.3	7
164	Transcriptional control of osteoblast differentiation and function. , 2020, , 163-176.		6
165	Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell, 2015, 162, 1169.	13.5	5
166	Chapter 10. Neuronal Regulation of Bone Remodeling. , 0, , 56-60.		5
167	Protein tyrosine phosphatase 1B regulates miR-208b-argonaute 2 association and thyroid hormone responsiveness in cardiac hypertrophy. Science Signaling, 2022, 15, eabn6875.	1.6	5
168	Broadening the Role of Osteocalcin in Leydig Cells. Endocrinology, 2014, 155, 4115-4116.	1.4	4
169	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
170	Tribute to L. J. Henderson, a remarkable physiologist, and the founder of the American School of Sociology (1878-1942). American Journal of Physiology - Cell Physiology, 2012, 303, C1001-C1003.	2.1	3
171	Bone as an Endocrine Organ. , 2014, , 193-205.		3
172	Searching for additional endocrine functions of the skeleton: genetic approaches and implications for therapeutics. Expert Review of Endocrinology and Metabolism, 2015, 10, 413-424.	1.2	3
173	Regulation of energy metabolism by bone-derived hormones. , 2020, , 1931-1942.		2
174	The Central Regulation of Bone Mass: Genetic Evidence and Molecular Bases. Handbook of Experimental Pharmacology, 2020, 262, 309-323.	0.9	2
175	Genetics of skeletogenesis. , 1998, 22, 301.		2
176	Inhibition of Leptin Regulation of Parasympathetic Signaling as a Cause of Extreme Body Weight-Associated Asthma. Cell Metabolism, 2013, 17, 463-464.	7.2	1
177	Energy Homeostasis and Neuronal Regulation of Bone Remodeling. , 2013, , 69-80.		1
178	Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1. Cell Metabolism, 2014, 19, 891.	7.2	1
179	Re-tuning bone formation. Journal of Experimental Medicine, 2015, 212, 3-3.	4.2	1

180 The Cross Talk Between the Central Nervous System, Bone, and Energy Metabolism. , 2018, , 317-328.

#	Article	IF	CITATIONS
181	FGFR3 Associates with and Tyrosine-Phosphorylates p90RSK2, Leading to RSK2 Activation That Mediates Hematopoietic Transformation. Blood, 2008, 112, 3722-3722.	0.6	1
182	Bone marrow runs the (bone) show. Journal of Experimental Medicine, 2021, 218, .	4.2	1
183	The Disappearance of a Renaissance Man: Paolo Bianco. Journal of Bone and Mineral Research, 2016, 31, 259-260.	3.1	0
184	Bone as an Endocrine Organ. , 2019, , 47-51.		0
185	miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. Journal of Experimental Medicine, 2012, 209, i10-i10.	4.2	0
186	Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. Journal of Clinical Investigation, 2014, 124, 5522-5522.	3.9	0
187	MON-LB086 Single-Cell Transcriptional Profiling of Bone Cells Reveals Diversity of Osteoblasts. Journal of the Endocrine Society, 2019, 3, .	0.1	0