
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6822148/publications.pdf Version: 2024-02-01

LUDITH A VADNED

#	Article	IF	CITATIONS
1	Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer, 2008, 8, 604-617.	28.4	911
2	PI3K \hat{I}^3 is a molecular switch that controls immune suppression. Nature, 2016, 539, 437-442.	27.8	884
3	Targeting Tumor-Associated Macrophages in Cancer. Trends in Immunology, 2019, 40, 310-327.	6.8	660
4	Regulation of Angiogenesis in Vivo by Ligation of Integrin α5β1 with the Central Cell-Binding Domain of Fibronectin. American Journal of Pathology, 2000, 156, 1345-1362.	3.8	604
5	Integrins and cancer. Current Opinion in Cell Biology, 1996, 8, 724-730.	5.4	470
6	Bruton Tyrosine Kinase–Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discovery, 2016, 6, 270-285.	9.4	408
7	Receptor Tyrosine Kinases and TLR/IL1Rs Unexpectedly Activate Myeloid Cell PI3K ^î 3, A Single Convergent Point Promoting Tumor Inflammation and Progression. Cancer Cell, 2011, 19, 715-727.	16.8	343
8	Macrophage PI3KÎ ³ Drives Pancreatic Ductal Adenocarcinoma Progression. Cancer Discovery, 2016, 6, 870-885.	9.4	235
9	A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. Journal of Clinical Investigation, 2006, 116, 652-662.	8.2	209
10	Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight, 2017, 2, .	5.0	203
11	Integrin CD11b activation drives anti-tumor innate immunity. Nature Communications, 2018, 9, 5379.	12.8	198
12	Regulation of Integrin αvβ3-mediated Endothelial Cell Migration and Angiogenesis by Integrin α5β1 and Protein Kinase A. Journal of Biological Chemistry, 2000, 275, 33920-33928.	3.4	191
13	Integrin α4β1–VCAM-1–mediated adhesion between endothelial and mural cells is required for blood vessel maturation. Journal of Clinical Investigation, 2005, 115, 1542-1551.	8.2	175
14	Integrin α4β1 Signaling Is Required for Lymphangiogenesis and Tumor Metastasis. Cancer Research, 2010, 70, 3042-3051.	0.9	163
15	Myeloid Cells in the Tumor Microenvironment: Modulation of Tumor Angiogenesis and Tumor Inflammation. Journal of Oncology, 2010, 2010, 1-10.	1.3	143
16	Inhibition of endothelial cell survival and angiogenesis by protein kinase A. Journal of Clinical Investigation, 2002, 110, 933-941.	8.2	143
17	Review: The Integrin α _v β ₃ : Angiogenesis and Apoptosis. Cell Adhesion and Communication, 1995, 3, 367-374.	1.7	136
18	Del1 Induces Integrin Signaling and Angiogenesis by Ligation of αVβ3. Journal of Biological Chemistry, 1999, 274, 11101-11109.	3.4	135

#	Article	IF	CITATIONS
19	Integrin α4β1 Promotes Monocyte Trafficking and Angiogenesis in Tumors. Cancer Research, 2006, 66, 2146-2152.	0.9	131
20	The Homeobox Transcription Factor Hox D3 Promotes Integrin $\hat{1}\pm5\hat{1}^21$ Expression and Function during Angiogenesis. Journal of Biological Chemistry, 2004, 279, 4862-4868.	3.4	114
21	Parathyroid hormone–related peptide is a naturally occurring, protein kinase A–dependent angiogenesis inhibitor. Nature Medicine, 2002, 8, 995-1003.	30.7	95
22	Combined Blockade of Integrin-α4β1 Plus Cytokines SDF-1α or IL-1β Potently Inhibits Tumor Inflammation and Growth. Cancer Research, 2011, 71, 6965-6975.	0.9	95
23	Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del-1. Journal of Clinical Investigation, 2003, 112, 30-41.	8.2	95
24	PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9042-9047.	7.1	84
25	The role of integrins in tumor angiogenesis. Hematology/Oncology Clinics of North America, 2004, 18, 991-1006.	2.2	82
26	Roles of Integrins in Tumor Angiogenesis and Lymphangiogenesis. Lymphatic Research and Biology, 2008, 6, 155-163.	1.1	82
27	Circulating endothelial progenitor cells. British Journal of Cancer, 2005, 93, 855-858.	6.4	81
28	The Embryonic Angiogenic Factor Del1 Accelerates Tumor Growth by Enhancing Vascular Formation. Microvascular Research, 2002, 64, 148-161.	2.5	80
29	Inhibition of endothelial cell survival and angiogenesis by protein kinase A. Journal of Clinical Investigation, 2002, 110, 933-941.	8.2	79
30	Securing the Payload, Finding the Cell, and Avoiding the Endosome: Peptide‶argeted, Fusogenic Porous Silicon Nanoparticles for Delivery of siRNA. Advanced Materials, 2019, 31, e1902952.	21.0	73
31	Myeloid cell trafficking and tumor angiogenesis. Cancer Letters, 2007, 250, 1-8.	7.2	68
32	PI3KÎ ³ Activates Integrin α4 and Promotes Immune Suppressive Myeloid Cell Polarization during Tumor Progression. Cancer Immunology Research, 2017, 5, 957-968.	3.4	64
33	The Primacy of \hat{I}^21 Integrin Activation in the Metastatic Cascade. PLoS ONE, 2012, 7, e46576.	2.5	61
34	Integrins in Tumor Angiogenesis and Lymphangiogenesis. Methods in Molecular Biology, 2011, 757, 471-486.	0.9	60
35	Myeloid cells in tumor inflammation. Vascular Cell, 2012, 4, 14.	0.2	56
36	PI3-Kinase Î ³ Promotes Rap1a-Mediated Activation of Myeloid Cell Integrin α4β1, Leading to Tumor Inflammation and Growth. PLoS ONE, 2013, 8, e60226.	2.5	51

#	Article	IF	CITATIONS
37	Fluorescent LYVE-1 Antibody to Image Dynamically Lymphatic Trafficking of Cancer Cells In Vivo. Journal of Surgical Research, 2009, 151, 68-73.	1.6	50
38	Angiogenesis: Noninvasive Quantitative Assessment with Contrast-enhanced Functional US in Murine Model. Radiology, 2006, 239, 730-739.	7.3	40
39	Inhibition of angiogenesis and tumor growth by murine 7E3, the parent antibody of c7E3 Fab (abciximab;) Tj E	TQq110.78 7.2	34314 rgBT
40	Angiogenesis model for ultrasound contrast research. Academic Radiology, 2004, 11, 4-12.	2.5	34
41	PI3KÎ ³ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
42	A PKA-Csk-pp60Src signaling pathway regulates the switch between endothelial cell invasion and cell-cell adhesion during vascular sprouting. Blood, 2010, 116, 5773-5783.	1.4	29
43	MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages. Oncogene, 2019, 38, 5599-5611.	5.9	29
44	Methods to Study Lymphatic Vessel Integrins. Methods in Enzymology, 2007, 426, 415-438.	1.0	28
45	Integrin α4 Enhances Metastasis and May Be Associated with Poor Prognosis in MYCNlow Neuroblastoma. PLoS ONE, 2015, 10, e0120815.	2.5	21
46	Lymphatic Endothelial Heparan Sulfate Deficiency Results in Altered Growth Responses to Vascular Endothelial Growth Factor-C (VEGF-C). Journal of Biological Chemistry, 2011, 286, 14952-14962.	3.4	19
47	Arming Tumor-Associated Macrophages to Reverse Epithelial Cancer Progression. Cancer Research, 2019, 79, 5048-5059.	0.9	19
48	lsolation of a Sponge-derived Extracellular Matrix Adhesion Protein. Journal of Biological Chemistry, 1996, 271, 16119-16125.	3.4	16
49	The sticky truth about angiogenesis and thrombospondins. Journal of Clinical Investigation, 2006, 116, 3111-3113.	8.2	9
50	Stem Cells and Neurogenesis in Tumors. , 2007, 39, 122-129.		8
51	Circulating Endothelial Progenitor Cells (CEPC). Methods in Molecular Biology, 2009, 467, 139-155.	0.9	5
52	Chapter 15 Methods to Study Myeloid Cell Roles in Angiogenesis. Methods in Enzymology, 2008, 445, 343-371.	1.0	4
53	PI3KÎ ³ stimulates a high molecular weight form of myosin light chain kinase to promote myeloid cell adhesion and tumor inflammation. Nature Communications, 2022, 13, 1768.	12.8	4
54	Rel-ating myeloid cells to cancer therapy. Nature Cancer, 2020, 1, 480-481.	13.2	2

#	Article	IF	Citations
55	Stem Cells, Angiogenesis, and Neurogenesis in Tumors. , 2009, , 247-252.		1
56	Lymphangiogenesis. , 2011, , 2117-2119.		1
57	An Inexpensive Vascularized Tumor Model for Vascular Imaging. Academic Radiology, 2005, 12, S41-S42.	2.5	Ο
58	Molecular Control of Lymphatic Metastasis in Lung Cancer. , 2009, , 173-191.		0
59	Integrin-Extracellular Matrix Interactions. , 2011, , 347-360.		0
60	Fibronectins and Their Receptors in Cancer. , 2010, , 111-136.		0
61	Abstract 411: PI3 Kinase gamma control of Arginase-1 expression promotes tumor immunosuppression. , 2012, , .		0
62	Lymphangiogenesis. , 2014, , 1-5.		0
63	Abstract 3650: PI3-kinase gamma controls the macrophage M1-M2 switch, thereby promoting tumor immunosuppression and progression. , 2014, , .		0
64	Abstract SY03-01: Macrophage PI3Kgamma drives cancer immune suppression. , 2016, , .		0
65	Abstract 718: Macrophage PI3Kgamma signaling promotes cancer immune suppression. , 2016, , .		Ο
66	The Role of Integrins in Tumor Angiogenesis. , 2008, , 49-71.		0
67	Lymphangiogenesis. , 2008, , 1727-1729.		0