
Wolfgang Holnthoner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lymphatic and Blood Endothelial Extracellular Vesicles: A Story Yet to Be Written. Life, 2022, 12, 654.	2.4	8
2	Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema. Biomedicines, 2022, 10, 1163.	3.2	6
3	Guiding cell migration in 3D with high-resolution photografting. Scientific Reports, 2022, 12, .	3.3	8
4	Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules, 2022, 12, 820.	4.0	6
5	Past and Future Prevascularization Strategies with Clinical Relevance: Leading to a Dual Approach. , 2021, , 1-14.		Ο
6	Approaches for Generation of Lymphatic Vessels. Reference Series in Biomedical Engineering, 2021, , 305-319.	0.1	0
7	Past and Future Prevascularization Strategies with Clinical Relevance: Leading to a Dual Approach. Reference Series in Biomedical Engineering, 2021, , 489-502.	0.1	1
8	Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab on A Chip, 2021, 21, 4128-4143.	6.0	26
9	Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation. International Journal of Molecular Sciences, 2021, 22, 4050.	4.1	1
10	Purinergic P2Y2 receptors modulate endothelial sprouting. Cellular and Molecular Life Sciences, 2020, 77, 885-901.	5.4	17
11	Editorial: MSC Signaling in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 614561.	4.1	1
12	Fluorescence-Based Nanoparticle Tracking Analysis and Flow Cytometry for Characterization of Endothelial Extracellular Vesicle Release. International Journal of Molecular Sciences, 2020, 21, 9278.	4.1	10
13	Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. Acta Biomaterialia, 2019, 86, 207-222.	8.3	27
14	Ex vivo engineering of blood and lymphatic microvascular networks. Vascular Biology (Bristol,) Tj ETQq0 0 0 rgB	T /Qverloc	k 19 Tf 50 222
15	Extracorporeal shock wave therapy <i>in situ</i> — novel approach to obtain an activated fat graft. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 416-426.	2.7	8
16	Microvascular Networks From Endothelial Cells and Mesenchymal Stromal Cells From Adipose Tissue and Bone Marrow: A Comparison. Frontiers in Bioengineering and Biotechnology, 2018, 6, 156.	4.1	40

17	Editorial: Vascularization for Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2018, 6, 175.	4.1	10

18Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by
microfluidic control over reciprocal cell signaling. Biomicrofluidics, 2018, 12, 042216.2.439

WOLFGANG HOLNTHONER

#	Article	IF	CITATIONS
19	The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Research and Therapy, 2018, 9, 35.	5.5	30
20	Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Frontiers in Physiology, 2018, 9, 815.	2.8	66
21	Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 2018, 4, 144.	3.4	69
22	Endothelial Cell-derived Extracellular Vesicles Size-dependently Exert Procoagulant Activity Detected by Thromboelastometry. Scientific Reports, 2017, 7, 3707.	3.3	30
23	The impact of wavelengths of LED light-therapy on endothelial cells. Scientific Reports, 2017, 7, 10700.	3.3	66
24	Improvement of adipose tissue–derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy, 2017, 19, 1079-1095.	0.7	32
25	Endothelial Extracellular Vesicles—Promises and Challenges. Frontiers in Physiology, 2017, 8, 275.	2.8	78
26	Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Frontiers in Bioengineering and Biotechnology, 2017, 5, 25.	4.1	74
27	Approaches for Generation of Lymphatic Vessels. , 2017, , 1-15.		Ο
28	Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 395-407.	4.8	35
29	Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation. Scientific Reports, 2016, 6, 25171.	3.3	74
30	Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomaterialia, 2016, 29, 125-134.	8.3	86
31	Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regeneration, 2015, 4, 4:8.	2.6	66
32	Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures. Journal of Biotechnology, 2015, 205, 70-81.	3.8	44
33	A microarray analysis of two distinct lymphatic endothelial cell populations. Genomics Data, 2015, 4, 115-118.	1.3	5
34	Emulating human microcapillaries in a multi-organ-chip platform. Journal of Biotechnology, 2015, 216, 1-10.	3.8	48
35	Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 127-136.	2.7	86
36	Establishment of Vascular Networks in Biochips Using Co-cultures of Adipose Derived Stem Cells and Endothelial Cells in a 3D Fibrin Matrix. IFMBE Proceedings, 2015, , 313-317.	0.3	3

WOLFGANG HOLNTHONER

#	Article	IF	CITATIONS
37	In-vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Engineering - Part A, 2014, 20, 131025032956001.	3.1	52
38	Connections Matter: Channeled Hydrogels to Improve Vascularization. Frontiers in Bioengineering and Biotechnology, 2014, 2, 52.	4.1	31
39	Laser Photofabrication of Cell-Containing Hydrogel Constructs. Langmuir, 2014, 30, 3787-3794.	3.5	159
40	Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis, 2014, 17, 921-933.	7.2	114
41	Human platelet lysate is a feasible candidate to replace fetal calf serum as medium supplement for blood vascular and lymphatic endothelial cells. Cytotherapy, 2014, 16, 1238-1244.	0.7	26
42	Molecular and Cellular Effects of In Vitro Shockwave Treatment on Lymphatic Endothelial Cells. PLoS ONE, 2014, 9, e114806.	2.5	23
43	Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. Journal of Polymer Science Part A, 2013, 51, 4799-4810.	2.3	74
44	Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Advances, 2013, 3, 15939.	3.6	117
45	Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 2013, 15, 1426-1435.	0.7	25
46	A novel coagulation assay incorporating adherent endothelial cells in thromboelastometry. Thrombosis and Haemostasis, 2013, 109, 869-877.	3.4	27
47	Effective Suppression of Vascular Network Formation by Combination of Antibodies Blocking VEGFR Ligand Binding and Receptor Dimerization. Cancer Cell, 2010, 18, 630-640.	16.8	119
48	Functional Analysis of FLT4 Mutations Associated with Nonne–Milroy Lymphedema. Journal of Investigative Dermatology, 2009, 129, 509-512.	0.7	7
49	Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. Journal of Medical Genetics, 2009, 46, 399-404.	3.2	60
50	VEGFR-3 Expression Is Restricted to Blood and Lymphatic Vessels in Solid Tumors. Cancer Cell, 2008, 13, 554-556.	16.8	78
51	Regulation of matrilysin expression in endothelium by fibroblast growth factor-2. Biochemical and Biophysical Research Communications, 2006, 342, 725-733.	2.1	19
52	IL-3 Induces Expression of Lymphatic Markers Prox-1 and Podoplanin in Human Endothelial Cells. Journal of Immunology, 2004, 173, 7161-7169.	0.8	84
53	Dimethylfumarate Inhibits TNF-Induced Nuclear Entry of NF-κB/p65 in Human Endothelial Cells. Journal of Immunology, 2002, 168, 4781-4787.	0.8	191
54	Fibroblast Growth Factor-2 Induces Lef/Tcf-dependent Transcription in Human Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 45847-45853.	3.4	115

#	Article	IF	CITATIONS
55	Platelet Endothelial Cell Adhesion Molecule-1 and Vascular Endothelial Cadherin Cooperatively Regulate Fibroblast Growth Factor-induced Modulations of Adherens Junction Functions. Journal of Investigative Dermatology, 2001, 116, 110-117.	0.7	11
56	Dimethylfumarate Inhibits Tumor-Necrosis-Factor-Induced CD62E Expression in an NF-κB-Dependent Manner. Journal of Investigative Dermatology, 2001, 117, 1363-1368.	0.7	67
57	Transactivation of Murine Cyclin A by Polyomavirus Large and Small T Antigens. Journal of Virology, 2001, 75, 6498-6507.	3.4	10
58	Dermal Microvascular Endothelial Cells Express the 180-kDa Macrophage Mannose Receptor In Situ and In Vitro. Journal of Immunology, 2000, 165, 5428-5434.	0.8	59