Wolfgang Holnthoner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/682117/publications.pdf

Version: 2024-02-01

58 papers

2,580 citations

172457 29 h-index 50 g-index

63 all docs

63
docs citations

63 times ranked

4235 citing authors

#	Article	IF	CITATIONS
1	Dimethylfumarate Inhibits TNF-Induced Nuclear Entry of NF- \hat{l}° B/p65 in Human Endothelial Cells. Journal of Immunology, 2002, 168, 4781-4787.	0.8	191
2	Laser Photofabrication of Cell-Containing Hydrogel Constructs. Langmuir, 2014, 30, 3787-3794.	3. 5	159
3	Effective Suppression of Vascular Network Formation by Combination of Antibodies Blocking VEGFR Ligand Binding and Receptor Dimerization. Cancer Cell, 2010, 18, 630-640.	16.8	119
4	Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Advances, 2013, 3, 15939.	3.6	117
5	Fibroblast Growth Factor-2 Induces Lef/Tcf-dependent Transcription in Human Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 45847-45853.	3.4	115
6	Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis, 2014, 17, 921-933.	7.2	114
7	Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 127-136.	2.7	86
8	Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomaterialia, 2016, 29, 125-134.	8.3	86
9	IL-3 Induces Expression of Lymphatic Markers Prox-1 and Podoplanin in Human Endothelial Cells. Journal of Immunology, 2004, 173, 7161-7169.	0.8	84
10	VEGFR-3 Expression Is Restricted to Blood and Lymphatic Vessels in Solid Tumors. Cancer Cell, 2008, 13, 554-556.	16.8	78
11	Endothelial Extracellular Vesiclesâ€"Promises and Challenges. Frontiers in Physiology, 2017, 8, 275.	2.8	78
12	Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. Journal of Polymer Science Part A, 2013, 51, 4799-4810.	2.3	74
13	Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation. Scientific Reports, 2016, 6, 25171.	3.3	74
14	Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Frontiers in Bioengineering and Biotechnology, 2017, 5, 25.	4.1	74
15	Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 2018, 4, 144.	3.4	69
16	Dimethylfumarate Inhibits Tumor-Necrosis-Factor-Induced CD62E Expression in an NF-κB-Dependent Manner. Journal of Investigative Dermatology, 2001, 117, 1363-1368.	0.7	67
17	Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regeneration, 2015, 4, 4:8.	2.6	66
18	The impact of wavelengths of LED light-therapy on endothelial cells. Scientific Reports, 2017, 7, 10700.	3.3	66

#	Article	IF	CITATIONS
19	Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Frontiers in Physiology, 2018, 9, 815.	2.8	66
20	Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. Journal of Medical Genetics, 2009, 46, 399-404.	3.2	60
21	Dermal Microvascular Endothelial Cells Express the 180-kDa Macrophage Mannose Receptor In Situ and In Vitro. Journal of Immunology, 2000, 165, 5428-5434.	0.8	59
22	In-vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Engineering - Part A, 2014, 20, 131025032956001.	3.1	52
23	Emulating human microcapillaries in a multi-organ-chip platform. Journal of Biotechnology, 2015, 216, 1-10.	3.8	48
24	Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures. Journal of Biotechnology, 2015, 205, 70-81.	3.8	44
25	Microvascular Networks From Endothelial Cells and Mesenchymal Stromal Cells From Adipose Tissue and Bone Marrow: A Comparison. Frontiers in Bioengineering and Biotechnology, 2018, 6, 156.	4.1	40
26	Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling. Biomicrofluidics, 2018, 12, 042216.	2.4	39
27	Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 395-407.	4.8	35
28	Improvement of adipose tissue–derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy, 2017, 19, 1079-1095.	0.7	32
29	Connections Matter: Channeled Hydrogels to Improve Vascularization. Frontiers in Bioengineering and Biotechnology, 2014, 2, 52.	4.1	31
30	Endothelial Cell-derived Extracellular Vesicles Size-dependently Exert Procoagulant Activity Detected by Thromboelastometry. Scientific Reports, 2017, 7, 3707.	3.3	30
31	The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Research and Therapy, 2018, 9, 35.	5.5	30
32	A novel coagulation assay incorporating adherent endothelial cells in thromboelastometry. Thrombosis and Haemostasis, 2013, 109, 869-877.	3.4	27
33	Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. Acta Biomaterialia, 2019, 86, 207-222.	8.3	27
34	Human platelet lysate is a feasible candidate to replace fetal calf serum as medium supplement for blood vascular and lymphatic endothelial cells. Cytotherapy, 2014, 16, 1238-1244.	0.7	26
35	Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab on A Chip, 2021, 21, 4128-4143.	6.0	26
36	Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 2013, 15, 1426-1435.	0.7	25

#	Article	IF	CITATIONS
37	Molecular and Cellular Effects of In Vitro Shockwave Treatment on Lymphatic Endothelial Cells. PLoS ONE, 2014, 9, e114806.	2.5	23
38	Regulation of matrilysin expression in endothelium by fibroblast growth factor-2. Biochemical and Biophysical Research Communications, 2006, 342, 725-733.	2.1	19
39	Purinergic P2Y2 receptors modulate endothelial sprouting. Cellular and Molecular Life Sciences, 2020, 77, 885-901.	5.4	17
40	Platelet Endothelial Cell Adhesion Molecule-1 and Vascular Endothelial Cadherin Cooperatively Regulate Fibroblast Growth Factor-induced Modulations of Adherens Junction Functions. Journal of Investigative Dermatology, 2001, 116, 110-117.	0.7	11
41	Transactivation of Murine Cyclin A by Polyomavirus Large and Small T Antigens. Journal of Virology, 2001, 75, 6498-6507.	3.4	10
42	Editorial: Vascularization for Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2018, 6, 175.	4.1	10
43	Fluorescence-Based Nanoparticle Tracking Analysis and Flow Cytometry for Characterization of Endothelial Extracellular Vesicle Release. International Journal of Molecular Sciences, 2020, 21, 9278.	4.1	10
44	Extracorporeal shock wave therapy <i>in situ</i> â€" novel approach to obtain an activated fat graft. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 416-426.	2.7	8
45	Lymphatic and Blood Endothelial Extracellular Vesicles: A Story Yet to Be Written. Life, 2022, 12, 654.	2.4	8
46	Guiding cell migration in 3D with high-resolution photografting. Scientific Reports, 2022, 12, .	3.3	8
47	Functional Analysis of FLT4 Mutations Associated with Nonne–Milroy Lymphedema. Journal of Investigative Dermatology, 2009, 129, 509-512.	0.7	7
48	Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema. Biomedicines, 2022, 10, 1163.	3.2	6
49	Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules, 2022, 12, 820.	4.0	6
50	A microarray analysis of two distinct lymphatic endothelial cell populations. Genomics Data, 2015, 4, 115-118.	1.3	5
51	Ex vivo engineering of blood and lymphatic microvascular networks. Vascular Biology (Bristol,) Tj ETQq1 1 0.78	34314 rgBT	/Overlock 101
52	Establishment of Vascular Networks in Biochips Using Co-cultures of Adipose Derived Stem Cells and Endothelial Cells in a 3D Fibrin Matrix. IFMBE Proceedings, 2015, , 313-317.	0.3	3
53	Editorial: MSC Signaling in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 614561.	4.1	1
54	Past and Future Prevascularization Strategies with Clinical Relevance: Leading to a Dual Approach. Reference Series in Biomedical Engineering, 2021, , 489-502.	0.1	1

#	Article	IF	CITATIONS
55	Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation. International Journal of Molecular Sciences, 2021, 22, 4050.	4.1	1
56	Past and Future Prevascularization Strategies with Clinical Relevance: Leading to a Dual Approach., 2021,, 1-14.		0
57	Approaches for Generation of Lymphatic Vessels. Reference Series in Biomedical Engineering, 2021, , 305-319.	0.1	O
58	Approaches for Generation of Lymphatic Vessels. , 2017, , 1-15.		0