
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6820515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YYâ€11, a camel milkâ€derived peptide, inhibits TGFâ€Î²â€mediated atherogenic signaling in human vascular smooth muscle cells. Journal of Food Biochemistry, 2022, 46, e13882.	2.9	1
2	Formulation and Biological Evaluation of Mesoporous Silica Nanoparticles Loaded with Combinations of Sortase A Inhibitors and Antimicrobial Peptides. Pharmaceutics, 2022, 14, 986.	4.5	8
3	Neutralisation of adeno-associated virus transduction by human vitreous humour. Gene Therapy, 2021, 28, 242-255.	4.5	6
4	Developing GLP-1 Conjugated Self-Assembling Nanofibers Using Copper-Catalyzed Alkyne–Azide Cycloaddition and Evaluation of Their Biological Activity. Bioconjugate Chemistry, 2021, 32, 810-820.	3.6	17
5	Sortase A (SrtA) inhibitors as an alternative treatment for superbug infections. Drug Discovery Today, 2021, 26, 2164-2172.	6.4	33
6	Optimized protocols for assessing libraries of poorly soluble sortase A inhibitors for antibacterial activity against medically-relevant bacteria, toxicity and enzyme inhibition. Bioorganic and Medicinal Chemistry, 2021, 52, 116527.	3.0	3
7	Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. Journal of Controlled Release, 2020, 317, 96-108.	9.9	21
8	Development of an Enzyme-Mediated, Site-Specific Method to Conjugate Toll-Like Receptor 2 Agonists onto Protein Antigens: Toward a Broadly Protective, Four Component, Group A Streptococcal Self-Adjuvanting Lipoprotein–Fusion Combination Vaccine. ACS Infectious Diseases, 2020, 6, 1770-1782.	3.8	6
9	Optimized Methods for the Production and Bioconjugation of Site-Specific, Alkyne-Modified Glucagon-like Peptide-1 (GLP-1) Analogs to Azide-Modified Delivery Platforms Using Copper-Catalyzed Alkyne–Azide Cycloaddition. Bioconjugate Chemistry, 2020, 31, 1820-1834.	3.6	28
10	Supercritical fluid assembly of albendazole liposomes targeting gastrin-releasing peptide receptor overexpressing tumors. Nanomedicine, 2020, 15, 1315-1330.	3.3	3
11	A Selfâ€Adjuvanting Vaccine Platform: Optimization of Siteâ€5pecific Sortase A Mediated Conjugation of Tollâ€Like Receptor 2 Ligands onto the Carboxyl or Amino terminus of Recombinant Protein Antigens. ChemPlusChem, 2020, 85, 227-236.	2.8	5
12	Peptide-based targeted polymeric nanoparticles for siRNA delivery. Nanotechnology, 2019, 30, 415604.	2.6	21
13	Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Science of the Total Environment, 2019, 692, 267-280.	8.0	67
14	Gastrin-releasing peptide receptor-targeted hybrid peptide/phospholipid pDNA/siRNA delivery systems. Nanomedicine, 2019, 14, 1153-1171.	3.3	8
15	An Experimental Group A <i>Streptococcus</i> Vaccine That Reduces Pharyngitis and Tonsillitis in a Nonhuman Primate Model. MBio, 2019, 10, .	4.1	57
16	Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency. Molecular Pharmaceutics, 2019, 16, 2278-2295.	4.6	54
17	Dispersibility of phospholipids and their optimization for the efficient production of liposomes using supercritical fluid technology. International Journal of Pharmaceutics, 2019, 563, 174-183.	5.2	9
18	Advances in Targeted Gene Delivery. Current Drug Delivery, 2019, 16, 588-608.	1.6	15

#	Article	IF	CITATIONS
19	Glucagonâ€Like Peptideâ€1 (GLPâ€1)â€Based Therapeutics: Current Status and Future Opportunities beyond Typeâ€2 Diabetes. ChemMedChem, 2018, 13, 662-671.	3.2	62
20	Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjugate Chemistry, 2018, 29, 572-586.	3.6	39
21	Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorganic and Medicinal Chemistry, 2018, 26, 516-526.	3.0	14
22	Preparation of albendazole-loaded liposomes by supercritical carbon dioxide processing. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, S1186-S1192.	2.8	9
23	Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine, 2017, 12, 281-293.	3.3	12
24	Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnology Advances, 2017, 35, 375-389.	11.7	76
25	Peptide-Based Multicomponent Oligonucleotide Delivery Systems: Optimisation of Poly-I-lysine Dendrons for Plasmid DNA Delivery. International Journal of Peptide Research and Therapeutics, 2017, 23, 119-134.	1.9	6
26	Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomaterialia, 2017, 59, 257-268.	8.3	39
27	Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. MBio, 2016, 7, .	4.1	51
28	Investigation of bombesin peptide as a targeting ligand for the gastrin releasing peptide (GRP) receptor. Bioorganic and Medicinal Chemistry, 2016, 24, 5834-5841.	3.0	24
29	Nanosized, peptide-based multicomponent DNA delivery systems: optimization of endosome escape activity. Nanomedicine, 2016, 11, 907-919.	3.3	14
30	Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chemical Science, 2016, 7, 2308-2321.	7.4	24
31	Progress in Vaccine Development. Current Protocols in Microbiology, 2015, 36, 18.1.1-18.1.26.	6.5	18
32	Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-l-lysine dendrons. Bioorganic and Medicinal Chemistry, 2015, 23, 2470-2479.	3.0	8
33	Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5570-5575.	2.2	6
34	Endosome Escape Strategies for Improving the Efficacy of Oligonucleotide Delivery Systems. Current Medicinal Chemistry, 2015, 22, 3326-3346.	2.4	41
35	Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine, 2014, 9, 2613-2624.	3.3	38
36	Site-Specific Incorporation of Three Toll-Like Receptor 2 Targeting Adjuvants into Semisynthetic, Molecularly Defined Nanoparticles: Application to Group A Streptococcal Vaccines. Bioconjugate Chemistry, 2014, 25, 965-978.	3.6	46

#	Article	IF	CITATIONS
37	Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine, 2014, 9, 35-43.	3.3	44
38	The contribution of non-human primate models to the development of human vaccines. Discovery Medicine, 2014, 18, 313-22.	0.5	26
39	Modern Subunit Vaccines: Development, Components, and Research Opportunities. ChemMedChem, 2013, 8, 360-376.	3.2	347
40	An efficient, chemically-defined semisynthetic lipid-adjuvanted nanoparticulate vaccine development system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 935-944.	3.3	32
41	Synthesis and Characterization of Luteinizing Hormone-Releasing Hormone (LHRH)-Functionalized Mini-Dendrimers. International Journal of Organic Chemistry, 2013, 03, 51-57.	0.7	5
42	Modern lipidâ€, carbohydrateâ€, and peptideâ€based delivery systems for peptide, vaccine, and gene products. Medicinal Research Reviews, 2011, 31, 520-547.	10.5	47
43	Method for the Synthesis of Mono-ADP-ribose Conjugated Peptides. Journal of the American Chemical Society, 2010, 132, 15878-15880.	13.7	52
44	Vaccine Delivery: Synthesis and Investigation of a Highly Pure, Multi-Epitopic Lipopeptide Vaccine Candidate. Advances in Experimental Medicine and Biology, 2009, 611, 347-349.	1.6	0
45	Strategies in Oral Immunization. , 2009, , 195-222.		0
46	Oral Vaccine Delivery – New Strategies and Technologies. Current Drug Delivery, 2009, 6, 347-358.	1.6	36
47	Vaccine delivery utilizing liposaccharides. Advances in Experimental Medicine and Biology, 2009, 611, 345-346.	1.6	0
48	Investigation toward multiâ€epitope vaccine candidates using native chemical ligation. Biopolymers, 2008, 90, 624-632.	2.4	14
49	Development of a Liposaccharide-Based Delivery System and Its Application to the Design of Group A Streptococcal Vaccines. Journal of Medicinal Chemistry, 2008, 51, 1447-1452.	6.4	34
50	Self-Adjuvanting Lipopeptide Vaccines. Current Medicinal Chemistry, 2008, 15, 506-516.	2.4	135
51	Structure–Activity Relationship of a Series of Synthetic Lipopeptide Self-Adjuvanting Group A Streptococcal Vaccine Candidates. Journal of Medicinal Chemistry, 2008, 51, 167-172.	6.4	65
52	Towards the Development of a Broadly Protective Group A Streptococcal Vaccine Based on the Lipid-Core Peptide System. Current Medicinal Chemistry, 2007, 14, 2976-2988.	2.4	13
53	Toward the Development of Prophylactic and Therapeutic Human Papillomavirus Type-16 Lipopeptide Vaccines. Journal of Medicinal Chemistry, 2007, 50, 4721-4727.	6.4	45
54	A technique for the synthesis of highly-pure, mono-epitopic, multi-valent lipid core peptide vaccines. Tetrahedron Letters, 2007, 48, 4965-4967.	1.4	15

#	Article	IF	CITATIONS
55	Method for the Synthesis of Multi-EpitopicStreptococcuspyogenesLipopeptide Vaccines Using Native Chemical Ligation. Journal of Organic Chemistry, 2006, 71, 6846-6850.	3.2	23
56	Synthesis of a Highly Pure Lipid Core Peptide Based Self-Adjuvanting Triepitopic Group A Streptococcal Vaccine, and Subsequent Immunological Evaluation. Journal of Medicinal Chemistry, 2006, 49, 6364-6370.	6.4	38
57	The lipid core peptide system in vaccine delivery. International Congress Series, 2006, 1289, 307-310.	0.2	0
58	Towards the synthesis of a highly pure, multiepitopic, mucosal group A streptococcal lipopeptide vaccine. International Congress Series, 2006, 1289, 324-328.	0.2	1
59	Development of Peptide Vaccines against HPV-16 Associated Cervical Cancer and Group A Streptococci. , 2006, , 407-408.		0
60	Method for the synthesis of highly pure vaccines using the lipid core peptide system. Journal of Peptide Science, 2006, 12, 800-807.	1.4	31
61	Synthesis and Immunological Evaluation of M Protein Targeted Tetra-Valent and Tri-Valent Group A Streptococcal Vaccine Candidates Based on the Lipid-Core Peptide System. International Journal of Peptide Research and Therapeutics, 2006, 12, 317-326.	1.9	9
62	Mucosal Immunisation: Adjuvants and Delivery Systems. Current Drug Delivery, 2004, 1, 385-396.	1.6	59
63	Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. International Journal of Peptide Research and Therapeutics, 2003, 10, 605-613.	0.1	9