
Masahiro Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6820240/publications.pdf Version: 2024-02-01

Μλελμιρο ΟΝΟ

#	Article	IF	CITATIONS
1	The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain, Behavior, and Immunity, 2022, 102, 179-194.	4.1	8
2	T-cell dysregulation in COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 204-210.	2.1	50
3	Application of dual Nr4a1-GFP Nr4a3-Tocky reporter mice to study TÂcell receptor signaling by flow cytometry. STAR Protocols, 2021, 2, 100284.	1.2	4
4	Restoring control over autoimmunity by inducing Foxp3. Nature Immunology, 2021, 22, 1080-1082.	14.5	0
5	NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6C ^{hi} monocytes in pressure-overloaded hearts. Science Signaling, 2021, 14, eabe4932.	3.6	13
6	Risk-Averse Planning Under Uncertainty. , 2020, , .		12
7	Control of regulatory Tâ€cell differentiation and function by Tâ€cell receptor signalling and Foxp3 transcription factor complexes. Immunology, 2020, 160, 24-37.	4.4	100
8	A Mixed Analysis of Influencing Factors for Trust in a Risk-Aware Autonomy. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 102-106.	0.3	2
9	Controlled Markov Processes With Safety State Constraints. IEEE Transactions on Automatic Control, 2019, 64, 1003-1018.	5.7	14
10	Sonic Hedgehog Is a Determinant of $\hat{I}^{\hat{J}}\hat{I}$ T-Cell Differentiation in the Thymus. Frontiers in Immunology, 2019, 10, 1629.	4.8	13
11	IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation. European Journal of Immunology, 2019, 49, 66-78.	2.9	38
12	Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. Journal of Clinical Investigation, 2019, 129, 3153-3170.	8.2	37
13	A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. Journal of Cell Biology, 2018, 217, 2931-2950.	5.2	63
14	Elucidating T Cell Activation-Dependent Mechanisms for Bifurcation of Regulatory and Effector T Cell Differentiation by Multidimensional and Single-Cell Analysis. Frontiers in Immunology, 2018, 9, 1444.	4.8	12
15	A temporally dynamic <i>Foxp3</i> autoregulatory transcriptional circuit controls the effector Treg programme. EMBO Journal, 2018, 37, .	7.8	38
16	Interplay between the skin barrier and immune cells in patients with atopic dermatitis unraveled by means of mathematical modeling. Journal of Allergy and Clinical Immunology, 2017, 139, 1790-1792.	2.9	3
17	FoxP3 partners up. Nature Immunology, 2017, 18, 1181-1183.	14.5	1
18	The impact of environmental enrichment on the murine inflammatory immune response. JCI Insight, 2017, 2, e90723.	5.0	30

MASAHIRO ONO

#	Article	IF	CITATIONS
19	Impact of Enriched Environment on Murine T Cell Differentiation and Gene Expression Profile. Frontiers in Immunology, 2016, 7, 381.	4.8	16
20	Sonic Hedgehog regulates thymic epithelial cell differentiation. Journal of Autoimmunity, 2016, 68, 86-97.	6.5	32
21	Water resistance profile as a marker of skin barrier damage in atopic dermatitis patients. Journal of Dermatological Science, 2016, 81, 126-128.	1.9	6
22	Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell Subpopulations. Journal of Immunology, 2016, 196, 2885-2892.	0.8	18
23	Controversies concerning thymusâ€derived regulatory T cells: fundamental issues and a new perspective. Immunology and Cell Biology, 2016, 94, 3-10.	2.3	27
24	Chance-constrained dynamic programming with application to risk-aware robotic space exploration. Autonomous Robots, 2015, 39, 555-571.	4.8	65
25	A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation. Oncotarget, 2015, 6, 28646-28660.	1.8	20
26	A Zap70â€dependent feedback circuit is essential for efficient selection of CD4 lineage thymocytes. Immunology and Cell Biology, 2015, 93, 406-416.	2.3	4
27	A risk-aware architecture for resilient spacecraft operations. , 2015, , .		8
28	Follicular helper T cell signature in type 1 diabetes. Journal of Clinical Investigation, 2015, 125, 292-303.	8.2	143
29	Visualisation of the T cell differentiation programme by Canonical Correspondence Analysis of transcriptomes. BMC Genomics, 2014, 15, 1028.	2.8	18
30	Identifying a Hyperkeratosis Signature in Autosomal Recessive Congenital Ichthyosis: Mdm2 Inhibition Prevents Hyperkeratosis in a Rat ARCI Model. Journal of Investigative Dermatology, 2014, 134, 858-861.	0.7	9
31	CD8 ⁺ tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. International Journal of Cancer, 2014, 134, 2393-2402.	5.1	76
32	Skin Disease Modeling from a Mathematical Perspective. Journal of Investigative Dermatology, 2013, 133, 1472-1478.	0.7	16
33	Tissue-Derived Hedgehog Proteins Modulate Th Differentiation and Disease. Journal of Immunology, 2013, 190, 2641-2649.	0.8	84
34	Risk factor-dependent dynamics of atopic dermatitis: modelling multi-scale regulation of epithelium homeostasis. Interface Focus, 2013, 3, 20120090.	3.0	13
35	Risk-limiting power grid control with an ARMA-based prediction model. , 2013, , .		7

4

Masahiro Ono

#	Article	IF	CITATIONS
37	Visualising the Cross-Level Relationships between Pathological and Physiological Processes and Gene Expression: Analyses of Haematological Diseases. PLoS ONE, 2013, 8, e53544.	2.5	12
38	Joint chance-constrained model predictive control with probabilistic resolvability. , 2012, , .		19
39	Differential effects of inhibition of bone morphogenic protein (BMP) signalling on Tâ€cell activation and differentiation. European Journal of Immunology, 2012, 42, 749-759.	2.9	52
40	Skin Barrier Homeostasis in Atopic Dermatitis: Feedback Regulation of Kallikrein Activity. PLoS ONE, 2011, 6, e19895.	2.5	30
41	Ethics should trump science in Fukushima. BMJ: British Medical Journal, 2011, 342, d3853-d3853.	2.3	0
42	HTLV-1 bZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation In Vivo. PLoS Pathogens, 2011, 7, e1001274.	4.7	267
43	A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control. IEEE Transactions on Robotics, 2010, 26, 502-517.	10.3	248
44	Indispensable Role of the Runx1-Cbfβ Transcription Complex for In Vivo-Suppressive Function of FoxP3+ Regulatory T Cells. Immunity, 2009, 31, 609-620.	14.3	206
45	Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor. Immunity, 2009, 30, 899-911.	14.3	1,955
46	Convex Chance Constrained Predictive Control Without Sampling. , 2009, , .		106
47	Regulatory T Cells and Immune Tolerance. Cell, 2008, 133, 775-787.	28.9	4,269
48	Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature, 2007, 446, 685-689.	27.8	594
49	Control of Autoimmune Myocarditis and Multiorgan Inflammation by Glucocorticoid-Induced TNF Receptor Family-Related Proteinhigh, Foxp3-Expressing CD25+ and CD25â^' Regulatory T Cells. Journal of Immunology, 2006, 176, 4748-4756.	0.8	144
50	Foxp3 ⁺ CD25 ⁺ CD4 ⁺ natural regulatory T cells in dominant selfâ€tolerance and autoimmune disease. Immunological Reviews, 2006, 212, 8-27.	6.0	1,404