Bettina Wilm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819685/publications.pdf

Version: 2024-02-01

331670 254184 2,067 47 21 43 h-index citations g-index papers 60 60 60 3344 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Firefly luciferase offers superior performance to AkaLuc for tracking the fate of administered cell therapies. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 796-808.	6.4	16
2	Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods. Physiological Reports, 2022, 10, e15211.	1.7	5
3	Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules, 2021, 11, 692.	4.0	20
4	Restricted differentiative capacity of Wt1-expressing peritoneal mesothelium in postnatal and adult mice. Scientific Reports, 2021, 11 , 15940 .	3.3	5
5	Mesenchymal stromal cells: what have we learned so far about their therapeutic potential and mechanisms of action?. Emerging Topics in Life Sciences, 2021, 5, 549-562.	2.6	12
6	Measuring Kidney Perfusion, pH, and Renal Clearance Consecutively Using MRI and Multispectral Optoacoustic Tomography. Molecular Imaging and Biology, 2020, 22, 494-503.	2.6	13
7	Multimodal Imaging Techniques Show Differences in Homing Capacity Between Mesenchymal Stromal Cells and Macrophages in Mouse Renal Injury Models. Molecular Imaging and Biology, 2020, 22, 904-913.	2.6	10
8	Perylene Diimide Nanoprobes for In Vivo Tracking of Mesenchymal Stromal Cells Using Photoacoustic Imaging. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27930-27939.	8.0	5
9	Regenerative medicine therapies: lessons from the kidney. Current Opinion in Physiology, 2020, 14, 41-47.	1.8	5
10	Expression of neurones and neuronal precursors in the transition zone of short-segment Hirschsprung's disease. Clinical Medicine, 2020, 20, s105-s106.	1.9	0
11	A Noninvasive Imaging Toolbox Indicates Limited Therapeutic Potential of Conditionally Activated Macrophages in a Mouse Model of Multiple Organ Dysfunction. Stem Cells International, 2019, 2019, 1-13.	2.5	7
12	<i>In vivo</i> fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells. Nanoscale Advances, 2019, 1, 367-377.	4.6	16
13	Multicolour In Vivo Bioluminescence Imaging Using a NanoLucâ€Based BRET Reporter in Combination with Firefly Luciferase. Contrast Media and Molecular Imaging, 2018, 2018, 1-10.	0.8	26
14	Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Research and Therapy, 2018, 9, 332.	5 . 5	66
15	Transdermal Measurement of Glomerular Filtration Rate in Mice. Journal of Visualized Experiments, 2018, , .	0.3	41
16	Functional molecules in mesothelialâ€toâ€mesenchymal transition revealed by transcriptome analyses. Journal of Pathology, 2018, 245, 491-501.	4.5	25
17	Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. ELife, 2018, 7, .	6.0	33
18	Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS ONE, 2018, 13, e0199918.	2.5	22

#	Article	IF	Citations
19	Optimising the use of medicines to reduce acute kidney injury in children and babies. , 2017, 174, 55-62.		8
20	Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue. Stem Cells Translational Medicine, 2017, 6, 1373-1384.	3.3	32
21	Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. Npj Regenerative Medicine, 2017, 2, 28.	5.2	47
22	Nephron Progenitors. , 2017, , 1053-1065.		1
23	Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS ONE, 2016, 11, e0158997.	2.5	20
24	Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. European Journal of Pharmacology, 2016, 790, 74-82.	3.5	25
25	Extracellular matrix scaffolds as a platform for kidney regeneration. European Journal of Pharmacology, 2016, 790, 21-27.	3.5	15
26	Autologous Cells for Kidney Bioengineering. Current Transplantation Reports, 2016, 3, 207-220.	2.0	10
27	The Role of WT1 in Embryonic Development and Normal Organ Homeostasis. Methods in Molecular Biology, 2016, 1467, 23-39.	0.9	36
28	Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells <i>iin Vivo</i> i>. ACS Nano, 2016, 10, 7106-7116.	14.6	78
29	Amniotic Fluid Stem Cells within Chimeric Kidney Rudiments Differentiate to Functional Podocytes after Transplantation into Mature Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2016, 27, 1266-1268.	6.1	1
30	Tools and Techniques for Wt1-Based Lineage Tracing. Methods in Molecular Biology, 2016, 1467, 41-59.	0.9	7
31	Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy. Scientific Reports, 2015, 5, 13601.	3.3	51
32	The role of ERK5 in endothelial cell function. Biochemical Society Transactions, 2014, 42, 1584-1589.	3.4	27
33	Stem Cells Derived from Neonatal Mouse Kidney Generate Functional Proximal Tubule-Like Cells and Integrate into Developing Nephrons In Vitro. PLoS ONE, 2013, 8, e62953.	2.5	17
34	Regulation of Progenitor Cell Proliferation and Neuronal Differentiation in Enteric Nervous System Neurospheres. PLoS ONE, 2013, 8, e54809.	2.5	18
35	Development of embryonic stem cells in recombinant kidneys. Organogenesis, 2012, 8, 125-136.	1.2	25
36	ERK5: Structure, regulation and function. Cellular Signalling, 2012, 24, 2187-2196.	3.6	199

#	Article	IF	CITATION
37	Integration potential of mouse and human bone marrow-derived mesenchymal stem cells. Differentiation, 2012, 83, 128-137.	1.9	19
38	Differentiation of Podocyte and Proximal Tubule-Like Cells from a Mouse Kidney-Derived Stem Cell Line. Stem Cells and Development, 2012, 21, 296-307.	2.1	35
39	The potential of small chemical functional groups for directing the differentiation of kidney stem cells. Biochemical Society Transactions, 2010, 38, 1062-1066.	3.4	13
40	Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16626-16630.	7.1	228
41	Serosal mesothelium retains vasculogenic potential. Developmental Dynamics, 2007, 236, 2973-2979.	1.8	36
42	CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. Journal of Cell Biology, 2006, 172, 1045-1056.	5.2	110
43	The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development (Cambridge), 2005, 132, 5317-5328.	2.5	277
44	The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Developmental Biology, 2004, 271, 176-189.	2.0	97
45	<i>Undulated short-tail</i> Deletion Mutation in the Mouse Ablates <i>Pax1</i> and Leads to Ectopic Activation of Neighboring <i>Nkx2-2</i> in Domains That Normally Express <i>Pax1</i> Genetics, 2003, 165, 299-307.	2.9	16
46	Identification of caspases and apoptosis in the simple metazoan Hydra. Current Biology, 1999, 9, 959-S2.	3.9	144
47	Targeted disruption of <i>Pax1</i> defines its null phenotype and proves haploinsufficiency. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8692-8697.	7.1	135