Daniel J Rader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819682/publications.pdf

Version: 2024-02-01

445 papers 72,381 citations

122 h-index 254 g-index

470 all docs

470 docs citations

470 times ranked

54456 citing authors

#	Article	IF	Citations
1	A Genomeâ€First Approach to Rare Variants in Dominant Postlingual Hearing Loss Genes in a Large Adult Population. Otolaryngology - Head and Neck Surgery, 2022, 166, 746-752.	1.9	3
2	Associations of Endogenous Hormones With HDL Novel Metrics Across the Menopause Transition: The SWAN HDL Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e303-e314.	3 . 6	5
3	LLF580, an FGF21 Analog, Reduces Triglycerides and Hepatic Fat in Obese Adults With Modest Hypertriglyceridemia. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e57-e70.	3.6	29
4	A genome-first approach to rare variants in hypertrophic cardiomyopathy genes <i>MYBPC3</i> and <i>MYH7</i> in a medical biobank. Human Molecular Genetics, 2022, 31, 827-837.	2.9	4
5	Association of Inherited Mutations in DNA Repair Genes with Localized Prostate Cancer. European Urology, 2022, 81, 559-567.	1.9	17
6	Cytomegalovirus Latent Infection is Associated with an Increased Risk of COVID-19-Related Hospitalization. Journal of Infectious Diseases, 2022, 226, 463-473.	4.0	39
7	Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	6.2	24
8	Web of Science's Citation Median Metrics Overcome the Major Constraints of the Journal Impact Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 367-371.	2.4	2
9	Coronary Artery Disease Risk of Familial Hypercholesterolemia Genetic Variants Independent of Clinically Observed Longitudinal Cholesterol Exposure. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003501.	3. 6	6
10	Sortilin restricts secretion of apolipoprotein B-100 by hepatocytes under stressed but not basal conditions. Journal of Clinical Investigation, 2022, 132, .	8.2	11
11	Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nature Genetics, 2022, 54, 382-392.	21.4	97
12	Associations of Abdominal and Cardiovascular Adipose Tissue Depots With HDL Metrics in Midlife Women: the SWAN Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2245-e2257.	3 . 6	2
13	Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature, 2022, 607, 97-103.	27.8	174
14	The Relationship Between Lipoproteins and Insulin Sensitivity in Youth With Obesity and Abnormal Glucose Tolerance. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1541-1551.	3.6	9
15	Endothelial plasticity drives aberrant vascularization and impedes cardiac repair after myocardial infarction., 2022, 1, 372-388.		9
16	Impact of natural selection on global patterns of genetic variation and association with clinical phenotypes at genes involved in SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123000119.	7.1	7
17	High heritability of ascending aortic diameter and trans-ancestry prediction of thoracic aortic disease. Nature Genetics, 2022, 54, 772-782.	21.4	29
18	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	21.4	68

#	Article	IF	CITATIONS
19	Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nature Genetics, 2022, 54, 1103-1116.	21.4	54
20	Genetics of Postlingual Sensorineural Hearing Loss. Laryngoscope, 2021, 131, 401-409.	2.0	17
21	Polygenic Risk of Psychiatric Disorders Exhibits Cross-trait Associations in Electronic Health Record Data From European Ancestry Individuals. Biological Psychiatry, 2021, 89, 236-245.	1.3	26
22	HDL (High-Density Lipoprotein) Subclasses, Lipid Content, and Function Trajectories Across the Menopause Transition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 951-961.	2.4	29
23	Rates of COVID-19–Related Outcomes in Cancer Compared With Noncancer Patients. JNCI Cancer Spectrum, 2021, 5, pkaa120.	2.9	26
24	Exome-wide evaluation of rare coding variants using electronic health records identifies new gene–phenotype associations. Nature Medicine, 2021, 27, 66-72.	30.7	44
25	Quantification of abdominal fat from computed tomography using deep learning and its association with electronic health records in an academic biobank. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1178-1187.	4.4	14
26	Disrupting upstream translation in mRNAs is associated with human disease. Nature Communications, 2021, 12, 1515.	12.8	37
27	Genome-first approach to rare EYA4 variants and cardio-auditory phenotypes in adults. Human Genetics, 2021, 140, 957-967.	3.8	7
28	A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease. ELife, $2021,10,$.	6.0	25
29	Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell, 2021, 184, 1858-1864.e10.	28.9	332
30	Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver. Science Advances, 2021, 7, .	10.3	6
31	ANGPTL3 Inhibition With Evinacumab Results in Faster Clearance of IDL and LDL apoB in Patients With Homozygous Familial Hypercholesterolemia—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1753-1759.	2.4	60
32	A randomized controlled trial of genetic testing and cascade screening in familial hypercholesterolemia. Genetics in Medicine, 2021, 23, 1697-1704.	2.4	11
33	SARS-CoV-2 Seropositivity and Seroconversion in Patients Undergoing Active Cancer-Directed Therapy. JCO Oncology Practice, 2021, 17, e1879-e1886.	2.9	2
34	Unbiased Analysis of Temporal Changes in Immune Serum Markers in Acute COVID-19 Infection With Emphasis on Organ Failure, Anti-Viral Treatment, and Demographic Characteristics. Frontiers in Immunology, 2021, 12, 650465.	4.8	19
35	Association Between Genetic Variation in Blood Pressure and Increased Lifetime Risk of Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2027-2034.	2.4	24
36	Lipid droplet screen in human hepatocytes identifies TRRAP as a regulator of cellular triglyceride metabolism. Clinical and Translational Science, 2021, 14, 1369-1379.	3.1	4

#	Article	IF	CITATIONS
37	Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. American Journal of Human Genetics, 2021, 108, 1350-1355.	6.2	72
38	Sequencing of 640,000 exomes identifies $\langle i \rangle$ GPR75 $\langle i \rangle$ variants associated with protection from obesity. Science, 2021, 373, .	12.6	130
39	Health care worker seromonitoring reveals complex relationships between common coronavirus antibodies and COVID-19 symptom duration. JCI Insight, 2021, 6, .	5.0	22
40	Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease. Circulation, 2021, 144, 353-364.	1.6	47
41	Hepatic Manifestations of Mendelian Disorders of Cholesterol Biosynthesis and Cellular Metabolism. Clinical Liver Disease, 2021, 18, 266-273.	2.1	0
42	Individual-specific functional epigenomics reveals genetic determinants of adverse metabolic effects of glucocorticoids. Cell Metabolism, 2021, 33, 1592-1609.e7.	16.2	15
43	Targeting the coronavirus nucleocapsid protein through GSK-3 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
44	Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins. PLoS Genetics, 2021, 17, e1009802.	3.5	18
45	Rare, Damaging DNA Variants in <i>CORIN</i> and Risk of Coronary Artery Disease: Insights From Functional Genomics and Large-Scale Sequencing Analyses. Circulation Genomic and Precision Medicine, 2021, 14, e003399.	3.6	10
46	Genetics of Smoking and Risk of Atherosclerotic Cardiovascular Diseases. JAMA Network Open, 2021, 4, e2034461.	5.9	42
47	Assessing HDL Metabolism in Subjects with Elevated Levels of HDL Cholesterol and Coronary Artery Disease. Molecules, 2021, 26, 6862.	3.8	3
48	MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Computational Biology, 2021, 17, e1009594.	3.2	11
49	TRIB1 regulates LDL metabolism through CEBPα-mediated effects on the LDL receptor in hepatocytes. Journal of Clinical Investigation, 2021, 131, .	8.2	9
50	Multi-Trait Genome-Wide Association Study of Atherosclerosis Detects Novel Pleiotropic Loci. Frontiers in Genetics, 2021, 12, 787545.	2.3	3
51	Implementation of a Machine-Learning Algorithm in the Electronic Health Record for Targeted Screening for Familial Hypercholesterolemia: A Quality Improvement Study. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, e007641.	2.2	7
52	A genome-first approach to aggregating rare genetic variants in LMNA for association with electronic health record phenotypes. Genetics in Medicine, 2020, 22, 102-111.	2.4	42
53	Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases. PLoS Genetics, 2020, 16, e1008538.	3.5	40
54	Annual Report on Sex in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e1-e9.	2.4	8

#	Article	IF	CITATIONS
55	Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran Program. Circulation, 2020, 142, 1633-1646.	1.6	78
56	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study. PLoS Medicine, 2020, 17, e1003288.	8.4	51
57	Lack of pathogenic germline DICER1 variants in males with testicular germ-cell tumors. Cancer Genetics, 2020, 248-249, 49-56.	0.4	0
58	Teaching Old Drugs New Tricks: Statins for COVID-19?. Cell Metabolism, 2020, 32, 145-147.	16.2	29
59	SARS-CoV-2 seroprevalence among parturient women in Philadelphia. Science Immunology, 2020, 5, .	11.9	121
60	Heterozygous <i>ABCG5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.	3.6	45
61	Validating a non-invasive, ALT-based non-alcoholic fatty liver phenotype in the million veteran program. PLoS ONE, 2020, 15, e0237430.	2.5	15
62	Mendelian Randomization Analysis of Hemostatic Factors and Their Contribution to Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 41, 380-386.	2.4	14
63	Selfâ€Organizing Human Induced Pluripotent Stem Cell Hepatocyte 3D Organoids Inform the Biology of the Pleiotropic TRIB1 Gene. Hepatology Communications, 2020, 4, 1316-1331.	4.3	6
64	ILRUN, a Human Plasma Lipid GWAS Locus, Regulates Lipoprotein Metabolism in Mice. Circulation Research, 2020, 127, 1347-1361.	4.5	11
65	Antiâ€Inflammatory HDL Function, Incident Cardiovascular Events, and Mortality: A Secondary Analysis of the JUPITER Randomized Clinical Trial. Journal of the American Heart Association, 2020, 9, e016507.	3.7	21
66	LDL-Cholesterol Reduction by ANGPTL3 Inhibition in Mice Is Dependent on Endothelial Lipase. Circulation Research, 2020, 127, 1112-1114.	4.5	46
67	4365 Family-Based Study of Sleep in Autism Spectrum Disorder without Intellectual Disability. Journal of Clinical and Translational Science, 2020, 4, 72-72.	0.6	0
68	EDEM3 Modulates Plasma Triglyceride Level through Its Regulation of LRP1 Expression. IScience, 2020, 23, 100973.	4.1	8
69	Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 2020, 52, 680-691.	21.4	445
70	Systematically Sifting Big Data to Identify Novel Causal Genes for Human Traits. Cell Metabolism, 2020, 31, 658-659.	16.2	0
71	Antisense oligonucleotides for atherosclerotic disease. Nature Medicine, 2020, 26, 471-472.	30.7	3
72	Novel congenital disorder of <i>O</i> -linked glycosylation caused by GALNT2 loss of function. Brain, 2020, 143, 1114-1126.	7.6	46

#	Article	IF	Citations
73	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study. , 2020, 17, e1003288.		O
74	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study., 2020, 17, e1003288.		0
75	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study. , 2020, 17, e1003288.		0
76	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study., 2020, 17, e1003288.		0
77	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study. , 2020, 17, e1003288.		0
78	Associations between cardiovascular disease, cancer, and very low high-density lipoprotein cholesterol in the REasons for Geographical and Racial Differences in Stroke (REGARDS) study. Cardiovascular Research, 2019, 115, 204-212.	3.8	34
79	Association of <i>APOL1</i> Risk Alleles With Cardiovascular Disease in Blacks in the Million Veteran Program. Circulation, 2019, 140, 1031-1040.	1.6	31
80	Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nature Medicine, 2019, 25, 1274-1279.	30.7	177
81	Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Science Advances, 2019, 5, eaax9183.	10.3	50
82	Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nature Genetics, 2019, 51, 1574-1579.	21.4	152
83	Precision screening for familial hypercholesterolaemia: a machine learning study applied to electronic health encounter data. The Lancet Digital Health, 2019, 1, e393-e402.	12.3	49
84	Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (<i>CHEK2</i>) With Susceptibility to Testicular Germ Cell Tumors. JAMA Oncology, 2019, 5, 514.	7.1	43
85	Lipids, Apolipoproteins, and Risk of Atherosclerotic Cardiovascular Disease in Persons With CKD. American Journal of Kidney Diseases, 2019, 73, 827-836.	1.9	43
86	N-Glycosylation Defects in Humans Lower Low-Density Lipoprotein Cholesterol Through Increased Low-Density Lipoprotein Receptor Expression. Circulation, 2019, 140, 280-292.	1.6	26
87	Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver. American Journal of Human Genetics, 2019, 105, 89-107.	6.2	35
88	Genomics-First Evaluation of Heart Disease Associated With Titin-Truncating Variants. Circulation, 2019, 140, 42-54.	1.6	97
89	Soluble FMS-Like Tyrosine Kinase-1 Is a Circulating Biomarker Associated With Calcific Aortic Stenosis. Journal of the American College of Cardiology, 2019, 73, 1364-1365.	2.8	2
90	Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nature Communications, 2019, 10, 1499.	12.8	346

#	Article	IF	Citations
91	Manganese homeostasis: from rare single-gene disorders to complex phenotypes and diseases. Journal of Clinical Investigation, 2019, 129, 5082-5085.	8.2	16
92	A Targeted, Differential Top-Down Proteomic Methodology for Comparison of ApoA-I Proteoforms in Individuals with High and Low HDL Efflux Capacity. Journal of Proteome Research, 2018, 17, 2156-2164.	3.7	30
93	NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated RiskÂofÂCardiovascular Disease and AorticÂStenosis. Journal of the American College of Cardiology, 2018, 71, 177-192.	2.8	337
94	Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circulation Research, 2018, 122, 568-582.	4.5	35
95	A Protein-Truncating <i>HSD17B13 </i> Variant and Protection from Chronic Liver Disease. New England Journal of Medicine, 2018, 378, 1096-1106.	27.0	556
96	Lipoprotein Disorders. , 2018, , 27-46.		1
97	Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 164-173.	2.4	43
98	Trials and Tribulations of CETP Inhibitors. Circulation Research, 2018, 122, 106-112.	4.5	210
99	Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis, 2018, 268, 196-206.	0.8	81
100	Interrogation of the Atherosclerosis-Associated <i>SORT1</i> (Sortilin 1) Locus With Primary Human Hepatocytes, Induced Pluripotent Stem Cell-Hepatocytes, and Locus-Humanized Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 76-82.	2.4	28
101	2003 Mixed meal effects of neprilysin inhibition. Journal of Clinical and Translational Science, 2018, 2, 44-44.	0.6	0
102	Genomic Risk Stratification Predicts All-Cause Mortality After Cardiac Catheterization. Circulation Genomic and Precision Medicine, 2018, 11, e002352.	3.6	16
103	Genetic Variants Associated With Plasma Lipids Are Associated With the Lipid Response to Niacin. Journal of the American Heart Association, 2018, 7, e03488.	3.7	8
104	FP526VASCULAR CXCR4 LIMITS ATHEROSCLEROSIS BY MAINTAINING ARTERIAL INTEGRITY. Nephrology Dialysis Transplantation, 2018, 33, i216-i216.	0.7	1
105	Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nature Genetics, 2018, 50, 1514-1523.	21.4	497
106	Multiplexed Targeted Resequencing Identifies Coding and Regulatory Variation Underlying Phenotypic Extremes of High-Density Lipoprotein Cholesterol in Humans. Circulation Genomic and Precision Medicine, 2018, 11, e002070.	3.6	5
107	Clinical Genetic Testing for FamilialÂHypercholesterolemia. Journal of the American College of Cardiology, 2018, 72, 662-680.	2.8	387
108	Apolipoprotein A-I Infusion Therapies for Coronary Disease. JAMA Cardiology, 2018, 3, 799.	6.1	26

#	Article	IF	CITATIONS
109	Directional ABCA1-mediated cholesterol efflux and apoB-lipoprotein secretion in the retinal pigment epithelium. Journal of Lipid Research, 2018, 59, 1927-1939.	4.2	21
110	Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.	21.4	552
111	Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. Journal of Clinical Investigation, 2018, 128, 826-833.	8.2	39
112	Biomarkers of Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 623-632.	2.4	63
113	A novel approach to measuring macrophage-specific reverse cholesterol transport in vivo in humans. Journal of Lipid Research, 2017, 58, 752-762.	4.2	22
114	Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. Journal of Lipid Research, 2017, 58, 731-741.	4.2	13
115	Intracoronary Imaging, Reverse Cholesterol Transport, and Transcriptomics. Journal of the American College of Cardiology, 2017, 69, 641-643.	2.8	2
116	Mediterranean Approach to Improving High-Density Lipoprotein Function. Circulation, 2017, 135, 644-647.	1.6	5
117	Deep Apolipoprotein Proteomics toÂUncover Mechanisms of CoronaryÂDiseaseÂRisk â^—. Journal of the American College of Cardiology, 2017, 69, 801-804.	2.8	4
118	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	2.8	214
119	Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature, 2017, 544, 235-239.	27.8	292
120	Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis. Journal of Biological Chemistry, 2017, 292, 10444-10454.	3.4	54
121	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
122	Cholesterol Efflux Capacity, High-Density Lipoprotein Particle Number, and Incident Cardiovascular Events. Circulation, 2017, 135, 2494-2504.	1.6	180
123	Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. New England Journal of Medicine, 2017, 376, 1933-1942.	27.0	593
124	Lack of MTTP Activity in Pluripotent Stem Cell-Derived Hepatocytes and Cardiomyocytes Abolishes apoB Secretion and Increases Cell Stress. Cell Reports, 2017, 19, 1456-1466.	6.4	36
125	Text mining applied to electronic cardiovascular procedure reports to identify patients with trileaflet aortic stenosis and coronary artery disease. Journal of Biomedical Informatics, 2017, 72, 77-84.	4.3	26
126	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	21.4	260

#	Article	IF	Citations
127	Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. New England Journal of Medicine, 2017, 377, 211-221.	27.0	633
128	Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. American Journal of Human Genetics, 2017, 100, 940-953.	6.2	81
129	ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. Journal of the American College of Cardiology, 2017, 69, 2054-2063.	2.8	348
130	A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell, 2017, 20, 478-489.e5.	11.1	92
131	Large, Diverse Population Cohorts of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at Blood Lipid-Associated Loci. Cell Stem Cell, 2017, 20, 558-570.e10.	11.1	138
132	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	21.4	470
133	Fine Mapping and Functional Analysis Reveal a Role of SLC22A1 in Acylcarnitine Transport. American Journal of Human Genetics, 2017, 101, 489-502.	6.2	52
134	A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nature Medicine, 2017, 23, 1086-1094.	30.7	88
135	New insights into the role of glycosylation in lipoprotein metabolism. Current Opinion in Lipidology, 2017, 28, 502-506.	2.7	17
136	Can changes in the plasma lipidome help explain the cardiovascular benefits of the Mediterranean diet?. American Journal of Clinical Nutrition, 2017, 106, 965-966.	4.7	1
137	Polygenic determinants in extremes of high-density lipoprotein cholesterol. Journal of Lipid Research, 2017, 58, 2162-2170.	4.2	49
138	Large-Scale Analysis of Determinants, Stability, and Heritability of High-Density Lipoprotein Cholesterol Efflux Capacity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1956-1962.	2.4	33
139	Cascade Screening for Familial Hypercholesterolemia and the Use of Genetic Testing. JAMA - Journal of the American Medical Association, 2017, 318, 381.	7.4	138
140	Oral Apolipoprotein Aâ€l Mimetic Dâ€4F Lowers HDLâ€lnflammatory Index in Highâ€Risk Patients: A Firstâ€inâ€Human Multipleâ€Dose, Randomized Controlled Trial. Clinical and Translational Science, 2017, 10, 455-469.	3.1	56
141	HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Current Cardiology Reports, 2017, 19, 132.	2.9	85
142	Paradoxical coronary artery disease in humans with hyperalphalipoproteinemia is associated with distinct differences in the high-density lipoprotein phosphosphingolipidome. Journal of Clinical Lipidology, 2017, 11, 1192-1200.e3.	1.5	9
143	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	21.4	218
144	Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. Journal of Clinical Investigation, 2017, 127, 2407-2417.	8.2	121

#	Article	IF	Citations
145	mTORC1 stimulates phosphatidylcholine synthesis to promote triglyceride secretion. Journal of Clinical Investigation, 2017, 127, 4207-4215.	8.2	71
146	TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Nature, 2016, 535, 303-307.	27.8	72
147	"Phenoâ€menal value for human health. Science, 2016, 354, 1534-1536.	12.6	12
148	Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. Journal of the American College of Cardiology, 2016, 67, 2578-2589.	2.8	723
149	Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution. Atherosclerosis, 2016, 250, 63-68.	0.8	11
150	Coding Variation in <i>ANGPTL4,LPL,SVEP1</i> <iand 1134-1144.<="" 2016,="" 374,="" coronary="" disease.="" england="" journal="" medicine,="" new="" of="" risk="" td="" the=""><td>27.0</td><td>427</td></iand>	27.0	427
151	Effects of the cholesteryl ester transfer protein inhibitor, TA-8995, on cholesterol efflux capacity and high-density lipoprotein particle subclasses. Journal of Clinical Lipidology, 2016, 10, 1137-1144.e3.	1.5	26
152	Cholesterol efflux capacity of high-density lipoprotein correlates with survival and allograft vasculopathy in cardiac transplant recipients. Journal of Heart and Lung Transplantation, 2016, 35, 1295-1302.	0.6	12
153	Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metabolism, 2016, 24, 234-245.	16.2	103
154	Targeting ApoC-III to Reduce Coronary Disease Risk. Current Atherosclerosis Reports, 2016, 18, 54.	4.8	31
155	Improving cardiovascular outcomes by intensifying low density lipoprotein lowering therapy in high-risk patients. European Heart Journal, 2016, 37, 3585-3587.	2.2	3
156	Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics. Trends in Molecular Medicine, 2016, 22, 328-340.	6.7	27
157	Recent advances in the pharmacological management of hypercholesterolaemia. Lancet Diabetes and Endocrinology,the, 2016, 4, 436-446.	11.4	28
158	Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351, 1166-1171.	12.6	438
159	Treatment Gaps in Adults With Heterozygous Familial Hypercholesterolemia in the United States. Circulation: Cardiovascular Genetics, 2016, 9, 240-249.	5.1	170
160	From Loci to Biology. Circulation Research, 2016, 118, 586-606.	4.5	54
161	New Therapeutic Approaches to the Treatment of Dyslipidemia. Cell Metabolism, 2016, 23, 405-412.	16.2	67
162	Cholesteryl Ester Transfer Protein Inhibition With Anacetrapib Decreases Fractional Clearance Rates of High-Density Lipoprotein Apolipoprotein A-I and Plasma Cholesteryl Ester Transfer Protein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 994-1002.	2.4	32

#	Article	IF	Citations
163	Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. Journal of Clinical Investigation, 2016, 126, 1323-1336.	8.2	196
164	Tribbles-1: a novel regulator of hepatic lipid metabolism in humans. Biochemical Society Transactions, 2015, 43, 1079-1084.	3.4	20
165	HDL-cholesterol and cardiovascular disease. Current Opinion in Cardiology, 2015, 30, 536-542.	1.8	59
166	High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1515-1519.	2.4	83
167	Triglyceride-Rich Lipoproteins and Coronary Artery Disease Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e3-9.	2.4	61
168	Lipoprotein Physiology. Contemporary Endocrinology, 2015, , 1-12.	0.1	2
169	Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet, The, 2015, 386, 452-460.	13.7	173
170	Accelerating the Pace of Atherosclerosis Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 11-12.	2.4	27
171	Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes and Endocrinology,the, 2015, 3, 507-513.	11.4	389
172	The Agenda for Familial Hypercholesterolemia. Circulation, 2015, 132, 2167-2192.	1.6	539
173	Cholesterol Efflux Capacity and Pre-Beta-1 HDL Concentrations Are Increased in Dyslipidemic Patients Treated With Evacetrapib. Journal of the American College of Cardiology, 2015, 66, 2201-2210.	2.8	105
174	Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis. Circulation Research, 2015, 116, 789-796.	4.5	149
175	Plasma Apolipoprotein C-III Levels, Triglycerides, and Coronary Artery Calcification in Type 2 Diabetics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1880-1888.	2.4	60
176	Potent peroxisome proliferator-activated receptor-Â agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. European Heart Journal, 2015, 36, 3020-3022.	2.2	29
177	Human Genetics of Atherothrombotic Disease and its Risk Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 741-747.	2.4	9
178	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	21.4	2,054
179	A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14623-14628.	7.1	98
180	Effects of Niacin, Statin, and Fenofibrate on Circulating Proprotein Convertase Subtilisin/Kexin Type 9 Levels in Patients With Dyslipidemia. American Journal of Cardiology, 2015, 115, 178-182.	1.6	51

#	Article	IF	CITATIONS
181	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518, 102-106.	27.8	581
182	Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPl $$ ±. Journal of Clinical Investigation, 2015, 125, 3809-3818.	8.2	84
183	Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production. Journal of Clinical Investigation, 2015, 125, 3819-3830.	8.2	72
184	Generation of iPSCs as a Pooled Culture Using Magnetic Activated Cell Sorting of Newly Reprogrammed Cells. PLoS ONE, 2015, 10, e0134995.	2.5	30
185	Spotlight on HDL biology: new insights in metabolism, function, and translation. Cardiovascular Research, 2014, 103, 337-340.	3.8	16
186	AAV Vectors Expressing LDLR Gain-of-Function Variants Demonstrate Increased Efficacy in Mouse Models of Familial Hypercholesterolemia. Circulation Research, 2014, 115, 591-599.	4.5	44
187	Lomitapide and Mipomersen. Circulation, 2014, 129, 1022-1032.	1.6	223
188	Inhibition of Endothelial Lipase Activity by Sphingomyelin in the Lipoproteins. Lipids, 2014, 49, 987-996.	1.7	13
189	Sortilin and lipoprotein metabolism. Current Opinion in Lipidology, 2014, 25, 350-357.	2.7	76
190	Differential Association of Plasma Angiopoietin-Like Proteins 3 and 4 With Lipid and Metabolic Traits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1057-1063.	2.4	66
191	Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary Heart Disease in 56,000 Whites and Blacks. American Journal of Human Genetics, 2014, 94, 223-232.	6.2	287
192	Future of Cholesteryl Ester Transfer Protein Inhibitors. Annual Review of Medicine, 2014, 65, 385-403.	12.2	62
193	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	2.0	302
194	Inactivating Mutations in <i>NPC1L1</i> and Protection from Coronary Heart Disease. New England Journal of Medicine, 2014, 371, 2072-2082.	27.0	386
195	Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort study. European Heart Journal, 2014, 35, 2115-2122.	2.2	41
196	Genetics of lipid traits: Genome-wide approaches yield new biology and clues to causality in coronary artery disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2010-2020.	3.8	9
197	Cardiovascular preventionâ€"end of the road for niacin?. Nature Reviews Endocrinology, 2014, 10, 646-647.	9.6	9
198	HDL and cardiovascular disease. Lancet, The, 2014, 384, 618-625.	13.7	540

#	Article	IF	CITATIONS
199	Lipoproteins as Biomarkers and Therapeutic Targets in the Setting of Acute Coronary Syndrome. Circulation Research, 2014, 114, 1880-1889.	4.5	38
200	Apolipoprotein A-I and Cholesterol Efflux. Circulation Research, 2014, 114, 1681-1683.	4.5	17
201	Lipidomic Analyses of Female Mice Lacking Hepatic Lipase and Endothelial Lipase Indicate Selective Modulation of Plasma Lipid Species. Lipids, 2014, 49, 505-515.	1.7	9
202	Decreased Cholesterol Efflux Capacity and Atherogenic Lipid Profile in Young Women With PCOS. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E841-E847.	3.6	54
203	Opposing Effects of ABCG5/8 Function on Myocardial Infarction and Gallstone Disease. Journal of the American College of Cardiology, 2014, 63, 2129-2130.	2.8	7
204	A novel ApoA-I truncation (ApoA-IMytilene) associated with decreased ApoA-I production. Atherosclerosis, 2014, 235, 470-476.	0.8	11
205	Genetics of Lipid Traits and Relationship to Coronary Artery Disease. Current Cardiology Reports, 2013, 15, 396.	2.9	13
206	High-density lipoproteins: A consensus statement from the National Lipid Association. Journal of Clinical Lipidology, 2013, 7, 484-525.	1.5	276
207	Anti-oxidative and cholesterol efflux capacities of high-density lipoprotein are reduced in ischaemic cardiomyopathy. European Journal of Heart Failure, 2013, 15, 1215-1219.	7.1	49
208	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	21.4	2,641
209	Common variants associated with plasma triglycerides and risk for coronary artery disease. Nature Genetics, 2013, 45, 1345-1352.	21.4	7 54
210	Secretory Phospholipase A2-IIA and Cardiovascular Disease. Journal of the American College of Cardiology, 2013, 62, 1966-1976.	2.8	115
211	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	21.4	1,439
212	Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet, The, 2013, 381, 40-46.	13.7	624
213	The Addition of Niacin to Statin Therapy Improves High-Density Lipoprotein Cholesterol Levels ButÂNot Metrics of Functionality. Journal of the American College of Cardiology, 2013, 62, 1909-1910.	2.8	71
214	Apolipoprotein E-mediated cell cycle arrest linked to p27 and the Cox2-dependent repression of miR221/222. Atherosclerosis, 2013, 227, 65-71.	0.8	25
215	Lymphatics as a New Active Player in Reverse Cholesterol Transport. Cell Metabolism, 2013, 17, 627-628.	16.2	6
216	Cholesterol Efflux Capacity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1449-1451.	2.4	30

#	Article	IF	CITATIONS
217	Beyond LDL Cholesterol in Assessing Cardiovascular Risk: apo B or LDL-P?. Clinical Chemistry, 2013, 59, 723-725.	3.2	17
218	Endothelial Lipase Is a Critical Determinant of High-Density Lipoprotein–Stimulated Sphingosine 1-Phosphate–Dependent Signaling in Vascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1788-1794.	2.4	36
219	Nuclear Receptors and microRNA-144 Coordinately Regulate Cholesterol Efflux. Circulation Research, 2013, 112, 1529-1531.	4.5	8
220	Mighty Minipig in Fight Against Cardiovascular Disease. Science Translational Medicine, 2013, 5, 166fs1.	12.4	16
221	Expression of Type IIA Secretory Phospholipase A ₂ Inhibits Cholesteryl Ester Transfer Protein Activity in Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2707-2714.	2.4	8
222	Biodistribution of AAV8 Vectors Expressing Human Low-Density Lipoprotein Receptor in a Mouse Model of Homozygous Familial Hypercholesterolemia. Human Gene Therapy Clinical Development, 2013, 24, 154-160.	3.1	34
223	Adeno-Associated Virus Serotype 8 Gene Therapy Leads to Significant Lowering of Plasma Cholesterol Levels in Humanized Mouse Models of Homozygous and Heterozygous Familial Hypercholesterolemia. Human Gene Therapy, 2013, 24, 19-26.	2.7	65
224	Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2909-2914.	2.4	87
225	Angptl3 Deficiency Is Associated With Increased Insulin Sensitivity, Lipoprotein Lipase Activity, and Decreased Serum Free Fatty Acids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1706-1713.	2.4	141
226	Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics. Clinical Lipidology, 2013, 8, 635-648.	0.4	11
227	Lipoprotein Disorders. , 2013, , 501-515.		0
228	Effect of interleukin $1\hat{l}^2$ inhibition in cardiovascular disease. Current Opinion in Lipidology, 2012, 23, 548-553.	2.7	68
229	Niacin Lipid Efficacy Is Independent of Both the Niacin Receptor GPR109A and Free Fatty Acid Suppression. Science Translational Medicine, 2012, 4, 148ra115.	12.4	102
230	Approach to the Patient with Extremely Low HDL-Cholesterol. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3399-3407.	3.6	69
231	Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet, The, 2012, 379, 1205-1213.	13.7	668
232	Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, The, 2012, 380, 572-580.	13.7	1,937
233	ApoE promotes hepatic selective uptake but not RCT due to increased ABCA1-mediated cholesterol efflux to plasma. Journal of Lipid Research, 2012, 53, 929-940.	4.2	25
234	Cardiovascular Protection by ApoE and ApoE-HDL Linked to Suppression of ECM Gene Expression and Arterial Stiffening. Cell Reports, 2012, 2, 1259-1271.	6.4	159

#	Article	IF	Citations
235	Prediabetic Obese Adolescents have a More Atherogenic Lipoprotein Profile Compared with Normoglycemic Obese Peers. Journal of Pediatrics, 2012, 161, 881-886.	1.8	16
236	Is it time to revise the HDL cholesterol hypothesis?. Nature Medicine, 2012, 18, 1344-1346.	30.7	241
237	Secreted miRNAs suppress atherogenesis. Nature Cell Biology, 2012, 14, 233-235.	10.3	17
238	Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci. American Journal of Human Genetics, 2012, 91, 823-838.	6.2	227
239	Targeting High Density Lipoproteins in the Prevention of Cardiovascular Disease?. Current Cardiology Reports, 2012, 14, 684-691.	2.9	29
240	Cholesterol Efflux and Atheroprotection. Circulation, 2012, 125, 1905-1919.	1.6	772
241	Genomic medicine in the prevention and treatment of atherosclerotic cardiovascular disease. Personalized Medicine, 2012, 9, 395-404.	1.5	3
242	Sortilin as a Regulator of Lipoprotein Metabolism. Current Atherosclerosis Reports, 2012, 14, 211-218.	4.8	45
243	IL-1 and atherosclerosis: a murine twist to an evolving human story. Journal of Clinical Investigation, 2012, 122, 27-30.	8.2	36
244	Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. Journal of Clinical Investigation, 2012, 122, 1677-1687.	8.2	96
245	Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. Journal of Clinical Investigation, 2012, 122, 2807-2816.	8.2	190
246	Multi-Ethnic Analysis of Lipid-Associated Loci: The NHLBI CARe Project. PLoS ONE, 2012, 7, e36473.	2.5	46
247	Biliary Sterol Secretion Is Required for Functional In Vivo Reverse Cholesterol Transport in Mice. Gastroenterology, 2011, 140, 1043-1051.	1.3	63
248	The Anti-Oxidative Capacity of High-Density Lipoprotein Is Reduced in Acute Coronary Syndrome But Not in Stable Coronary Artery Disease. Journal of the American College of Cardiology, 2011, 58, 2068-2075.	2.8	105
249	Novel HDL-directed pharmacotherapeutic strategies. Nature Reviews Cardiology, 2011, 8, 266-277.	13.7	136
250	Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet, The, 2011, 377, 383-392.	13.7	466
251	Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Current Opinion in Lipidology, 2011, 22, 123-128.	2.7	34
252	Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 2011, 43, 333-338.	21.4	1,685

#	Article	IF	Citations
253	PPAR \hat{I}^3 activation redirects macrophage cholesterol from fecal excretion to adipose tissue uptake in mice via SR-BI. Biochemical Pharmacology, 2011, 81, 934-941.	4.4	19
254	Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. New England Journal of Medicine, 2011, 364, 127-135.	27.0	1,686
255	Adiponectin Is Associated with Favorable Lipoprotein Profile, Independent of BMI and Insulin Resistance, in Adolescents. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1549-1554.	3.6	41
256	Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. Journal of Lipid Research, 2011, 52, 361-373.	4.2	129
257	Pharmacologic Suppression of Hepatic ATP-Binding Cassette Transporter 1 Activity in Mice Reduces High-Density Lipoprotein Cholesterol Levels but Promotes Reverse Cholesterol Transport. Circulation, 2011, 124, 1382-1390.	1.6	61
258	Dense Genotyping of Candidate Gene Loci Identifies Variants Associated With High-Density Lipoprotein Cholesterol. Circulation: Cardiovascular Genetics, 2011, 4, 145-155.	5.1	71
259	Adipose Modulation of High-Density Lipoprotein Cholesterol. Circulation, 2011, 124, 1602-1605.	1.6	37
260	Mining the LIPG Allelic Spectrum Reveals the Contribution of Rare and Common Regulatory Variants to HDL Cholesterol. PLoS Genetics, 2011, 7, e1002393.	3.5	32
261	Peroxisome Proliferator-Activated Receptor-α Activation Promotes Macrophage Reverse Cholesterol Transport Through a Liver X Receptor–Dependent Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1276-1282.	2.4	47
262	Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project. PLoS Genetics, 2011, 7, e1001300.	3.5	290
263	Influence of Apolipoprotein A-I Domain Structure on Macrophage Reverse Cholesterol Transport in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 320-327.	2.4	25
264	Atherogenic Lipid Metabolism in Obesity. , 2011, , 293-309.		1
265	Update on the Role of Endothelial Lipase in High-Density Lipoprotein Metabolism, Reverse Cholesterol Transport, and Atherosclerosis. Circulation Journal, 2010, 74, 2263-2270.	1.6	100
266	Clinical Implications of Lipid Genetics for Cardiovascular Disease. Current Cardiovascular Risk Reports, 2010, 4, 461-468.	2.0	22
267	Future Therapeutic Directions in Reverse Cholesterol Transport. Current Atherosclerosis Reports, 2010, 12, 73-81.	4.8	93
268	CXCL12: A New Player in Coronary Disease Identified through Human Genetics. Trends in Cardiovascular Medicine, 2010, 20, 204-209.	4.9	46
269	Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochemical Pharmacology, 2010, 80, 1450-1457.	4.4	46
270	Shortâ€Term Treatment with Highâ€Dose Atorvastatin Reduces LDL Cholesterol but Shows no Antiâ€Inflammatory Effects in Normolipidemic Subjects with Normal CRP Levels. Clinical and Translational Science, 2010, 3, 140-146.	3.1	14

#	Article	IF	Citations
271	From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 2010, 466, 714-719.	27.8	1,018
272	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	27.8	3,249
273	Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm. Nature Genetics, 2010, 42, 692-697.	21.4	181
274	Gene Therapy in a Humanized Mouse Model of Familial Hypercholesterolemia Leads to Marked Regression of Atherosclerosis. PLoS ONE, 2010, 5, e13424.	2.5	69
275	Tissue-Specific Liver X Receptor Activation Promotes Macrophage Reverse Cholesterol Transport In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 781-786.	2.4	107
276	Could Exercise Metabolomics Pave the Way for Gymnomimetics?. Science Translational Medicine, 2010, 2, 41ps35.	12.4	11
277	Genetic Variants Influencing Circulating Lipid Levels and Risk of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2264-2276.	2.4	369
278	Polyphenols and Cholesterol Efflux. Circulation Research, 2010, 106, 627-629.	4.5	18
279	Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. Journal of Clinical Investigation, 2010, 120, 2889-2899.	8.2	71
280	Impact of Combined Deficiency of Hepatic Lipase and Endothelial Lipase on the Metabolism of Both High-Density Lipoproteins and Apolipoprotein B–Containing Lipoproteins. Circulation Research, 2010, 107, 357-364.	4.5	70
281	The Ability to Promote Efflux Via ABCA1 Determines the Capacity of Serum Specimens With Similar High-Density Lipoprotein Cholesterol to Remove Cholesterol From Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 796-801.	2.4	348
282	Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies. Clinical Lipidology, 2010, 5, 793-809.	0.4	13
283	Lipoprotein Disorders. , 2010, , 269-288.		1
284	Trib1 is a lipid- and myocardial infarction–associated gene that regulates hepatic lipogenesis and VLDL production in mice. Journal of Clinical Investigation, 2010, 120, 4410-4414.	8.2	127
285	Identification of the Active Form of Endothelial Lipase, a Homodimer in a Head-to-Tail Conformation. Journal of Biological Chemistry, 2009, 284, 23322-23330.	3.4	40
286	Lecithin: Cholesterol Acyltransferase Expression Has Minimal Effects on Macrophage Reverse Cholesterol Transport In Vivo. Circulation, 2009, 120, 160-169.	1.6	87
287	The T111I variant in the endothelial lipase gene and risk of coronary heart disease in three independent populations. European Heart Journal, 2009, 30, 1584-1589.	2.2	39
288	Fish Oil Promotes Macrophage Reverse Cholesterol Transport in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1502-1508.	2.4	50

#	Article	IF	Citations
289	Macrophage Reverse Cholesterol Transport in Mice Expressing ApoA-I Milano. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1496-1501.	2.4	53
290	Lecithin: Cholesterol Acyltransferase and Atherosclerosis. Circulation, 2009, 120, 549-552.	1.6	20
291	Potent and Selective PPAR-α Agonist LY518674 Upregulates Both ApoA-I Production and Catabolism in Human Subjects With the Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 140-146.	2.4	41
292	Discovery and Validation of New Molecular Targets in Treating Dyslipidemia: The Role of Human Genetics. Trends in Cardiovascular Medicine, 2009, 19, 195-201.	4.9	19
293	Both the Peroxisome Proliferatorâ€Activated Receptor δAgonist, GW0742, and Ezetimibe Promote Reverse Cholesterol Transport in Mice by Reducing Intestinal Reabsorption of HDLâ€Derived Cholesterol. Clinical and Translational Science, 2009, 2, 127-133.	3.1	64
294	Inflammation induces fibrinogen nitration in experimental human endotoxemia. Free Radical Biology and Medicine, 2009, 47, 1140-1146.	2.9	30
295	Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nature Genetics, 2009, 41, 342-347.	21.4	709
296	Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nature Genetics, 2009, 41, 334-341.	21.4	990
297	Update on strategies to increase HDL quantity and function. Nature Reviews Cardiology, 2009, 6, 455-463.	13.7	172
298	The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. Journal of Lipid Research, 2009, 50, S189-S194.	4.2	488
299	Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. Journal of Clinical Investigation, 2009, 119, 1042-50.	8.2	162
300	Novel ENU-Induced Point Mutation in Scavenger Receptor Class B, Member 1, Results in Liver Specific Loss of SCARB1 Protein. PLoS ONE, 2009, 4, e6521.	2.5	15
301	Therapeutic Targeting of High-Density Lipoprotein Metabolism. , 2009, , 544-552.		0
302	Lipoprotein Disorders. , 2009, , 634-651.		0
303	Longitudinal Evaluation and Assessment of Cardiovascular Disease in Patients With Homozygous Familial Hypercholesterolemia. American Journal of Cardiology, 2008, 102, 1438-1443.	1.6	146
304	The Influence of Pravastatin and Atorvastatin on Markers of Oxidative Stress in Hypercholesterolemic Humans. Journal of the American College of Cardiology, 2008, 51, 1653-1662.	2.8	104
305	Laboratory Assessment of HDL Heterogeneity and Function. Clinical Chemistry, 2008, 54, 788-800.	3.2	164
306	Beyond High-Density Lipoprotein Cholesterol Levels. Journal of the American College of Cardiology, 2008, 51, 2199-2211.	2.8	231

#	Article	IF	CITATIONS
307	Knockdown of Acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 97-104.	2.4	79
308	Translating molecular discoveries into new therapies for atherosclerosis. Nature, 2008, 451, 904-913.	27.8	436
309	Structure–function properties of the apoE-dependent COX-2 pathway in vascular smooth muscle cells. Atherosclerosis, 2008, 196, 201-209.	0.8	15
310	Cholesteryl Ester Transfer Protein (CETP) Inhibitors: Is There Life After Torcetrapib?. Cardiology Clinics, 2008, 26, 537-546.	2.2	18
311	Dyslipidemia in insulin resistance: clinical challenges and adipocentric therapeutic frontiers. Expert Review of Cardiovascular Therapy, 2008, 6, 1007-1022.	1.5	14
312	Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. Journal of Lipid Research, 2008, 49, 1344-1352.	4.2	266
313	When HDL Gets Fat …. Circulation Research, 2008, 103, 131-132.	4.5	7
314	Upregulation of Macrophage Endothelial Lipase by Toll-Like Receptors 4 and 3 Modulates Macrophage Interleukin-10 and -12 Production. Circulation Research, 2007, 100, 1008-1015.	4.5	24
315	Expression of Cholesteryl Ester Transfer Protein in Mice Promotes Macrophage Reverse Cholesterol Transport. Circulation, 2007, 116, 1267-1273.	1.6	135
316	Wild-Type ApoA-I and the Milano Variant Have Similar Abilities to Stimulate Cellular Lipid Mobilization and Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2022-2029.	2.4	46
317	Glycosylation of endothelial lipase at asparagine-116 reduces activity and the hydrolysis of native lipoproteins in vitro and in vivo. Journal of Lipid Research, 2007, 48, 1132-1139.	4.2	14
318	N-Glycosylation regulates endothelial lipase-mediated phospholipid hydrolysis in apoE- and apoA-l-containing high density lipoproteins. Journal of Lipid Research, 2007, 48, 2047-2057.	4.2	23
319	Molecular regulation of macrophage reverse cholesterol transport. Current Opinion in Cardiology, 2007, 22, 368-372.	1.8	104
320	Lipases as Modulators of Atherosclerosis in Murine Models. Current Drug Targets, 2007, 8, 1307-1319.	2.1	35
321	Mechanisms of Disease: HDL metabolism as a target for novel therapies. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 102-109.	3.3	59
322	Effect of Insulin Resistance, Dyslipidemia, and Intra-abdominal Adiposity on the Development of Cardiovascular Disease and Diabetes Mellitus. American Journal of Medicine, 2007, 120, S12-S18.	1.5	254
323	Hepatic Proprotein Convertases Modulate HDL Metabolism. Cell Metabolism, 2007, 6, 129-136.	16.2	117
324	Illuminating HDL â€" Is It Still a Viable Therapeutic Target?. New England Journal of Medicine, 2007, 357, 2180-2183.	27.0	121

#	Article	IF	CITATIONS
325	A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction. Science, 2007, 316, 1491-1493.	12.6	1,485
326	Flaxseed Reduces Plasma Cholesterol Levels in Hypercholesterolemic Mouse Models. Journal of the American College of Nutrition, 2007, 26, 66-75.	1.8	56
327	Inhibition of Microsomal Triglyceride Transfer Protein in Familial Hypercholesterolemia. New England Journal of Medicine, 2007, 356, 148-156.	27.0	504
328	Obesity and Atherogenic Dyslipidemia. Gastroenterology, 2007, 132, 2181-2190.	1.3	129
329	CXCL16 Is a Marker of Inflammation, Atherosclerosis, and Acute Coronary Syndromes in Humans. Journal of the American College of Cardiology, 2007, 49, 442-449.	2.8	148
330	Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovascular Diabetology, 2007, 6, 15.	6.8	64
331	'Multipurpose oxidase' in atherogenesis. Nature Medicine, 2007, 13, 1146-1147.	30.7	16
332	Liver X Receptor and Farnesoid X Receptor as Therapeutic Targets. American Journal of Cardiology, 2007, 100, S15-S19.	1.6	45
333	Endocannabinoid Antagonism: Blocking the Excess in the Treatment of High-Risk Abdominal Obesity. Trends in Cardiovascular Medicine, 2007, 17, 35-43.	4.9	20
334	Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. Journal of Clinical Investigation, 2007, 117, 2216-2224.	8.2	498
335	Genetic Disorders of Lipoprotein Metabolism. , 2007, , 23-35.		1
336	Anti-Inflammatory and Antioxidant Functions of High Density Lipoproteins., 2006,, 399-436.		0
337	Effects of Rosiglitazone on Lipids, Adipokines, and Inflammatory Markers in Nondiabetic Patients With Low High-Density Lipoprotein Cholesterol and Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 624-630.	2.4	137
338	Persistent liver expression of murine apoA-l using vectors based on adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis, 2006, 186, 65-73.	0.8	27
339	Molecular regulation of HDL metabolism and function: implications for novel therapies. Journal of Clinical Investigation, 2006, 116, 3090-3100.	8.2	480
340	Apolipoprotein E and Coronary Disease: A Puzzling Paradox. PLoS Medicine, 2006, 3, e258.	8.4	21
341	A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nature Genetics, 2006, 38, 68-74.	21.4	339
342	Human genetics of variation in high-density lipoprotein cholesterol. Current Atherosclerosis Reports, 2006, 8, 198-205.	4.8	39

#	Article	IF	Citations
343	Macrophage Reverse Cholesterol Transport. Circulation, 2006, 113, 2548-2555.	1.6	485
344	Effects of Pioglitazone on Lipoproteins, Inflammatory Markers, and Adipokines in Nondiabetic Patients with Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 182-188.	2.4	160
345	High-Density Lipoprotein Hydrolysis by Endothelial Lipase Activates PPARα. Circulation Research, 2006, 98, 490-498.	4.5	84
346	Endothelial lipase is less effective at influencing HDL metabolism in vivo in mice expressing apoA-II. Journal of Lipid Research, 2006, 47, 2191-2197.	4.2	18
347	Emerging Therapies Targeting High-Density Lipoprotein Metabolism and Reverse Cholesterol Transport. Circulation, 2006, 113, 1140-1150.	1.6	93
348	Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production. Journal of Lipid Research, 2006, 47, 2297-2305.	4.2	78
349	Complete Prevention of Atherosclerosis in ApoE-Deficient Mice by Hepatic Human ApoE Gene Transfer With Adeno-Associated Virus Serotypes 7 and 8. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1852-1857.	2.4	52
350	Pharmacological Activation of Liver X Receptors Promotes Reverse Cholesterol Transport In Vivo. Circulation, 2006, 113, 90-97.	1.6	344
351	Effects of the Cholesteryl Ester Transfer Protein Inhibitor Torcetrapib on Apolipoprotein B100 Metabolism in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1350-1356.	2.4	68
352	Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras. Journal of Lipid Research, 2006, 47, 1803-1811.	4.2	44
353	Drugs in development: targeting high-density lipoprotein metabolism and reverse cholesterol transport. Current Opinion in Cardiology, 2005, 20, 301-306.	1.8	28
354	Endothelial Lipase: A Novel Drug Target for HDL and Atherosclerosis?., 2005,, 139-153.		1
355	Current drug options for raising HDL cholesterol. Current Treatment Options in Cardiovascular Medicine, 2005, 7, 15-23.	0.9	6
356	Endothelial Lipase Concentrations Are Increased in Metabolic Syndrome and Associated with Coronary Atherosclerosis. PLoS Medicine, 2005, 3, e22.	8.4	147
357	Proprotein Covertases Are Responsible for Proteolysis and Inactivation of Endothelial Lipase. Journal of Biological Chemistry, 2005, 280, 36551-36559.	3.4	91
358	Complete Deficiency of the Low-Density Lipoprotein Receptor Is Associated With Increased Apolipoprotein B-100 Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 560-565.	2.4	74
359	Gene therapy for lipoprotein disorders. Expert Opinion on Biological Therapy, 2005, 5, 1029-1038.	3.1	7
360	Effects of Cholesteryl Ester Transfer Protein Inhibition on High-Density Lipoprotein Subspecies, Apolipoprotein A-I Metabolism, and Fecal Sterol Excretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1057-1064.	2.4	228

#	Article	IF	CITATIONS
361	ATVB In Focus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 480-481.	2.4	5
362	Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. Journal of Lipid Research, 2005, 46, 2023-2028.	4.2	220
363	Increased Atherosclerosis in Mice Lacking Apolipoprotein A-I Attributable to Both Impaired Reverse Cholesterol Transport and Increased Inflammation. Circulation Research, 2005, 97, 763-771.	4.5	165
364	Regulated expression of endothelial lipase by porcine brain capillary endothelial cells constituting the blood-brain barrier. Journal of Neurochemistry, 2005, 94, 109-119.	3.9	37
365	New Insights Into the Regulation of HDL Metabolism and Reverse Cholesterol Transport. Circulation Research, 2005, 96, 1221-1232.	4.5	901
366	Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell?. Cell Metabolism, 2005, 1, 223-230.	16.2	125
367	Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase–deficient mouse adipose tissue. Journal of Clinical Investigation, 2005, 115, 161-167.	8.2	23
368	Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase–deficient mouse adipose tissue. Journal of Clinical Investigation, 2005, 115, 161-167.	8.2	42
369	Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. Journal of Clinical Investigation, 2005, 115, 2870-2874.	8.2	269
370	Effects of an Inhibitor of Cholesteryl Ester Transfer Protein on HDL Cholesterol. New England Journal of Medicine, 2004, 350, 1505-1515.	27.0	743
371	Role of N-linked glycosylation in the secretion and activity of endothelial lipase. Journal of Lipid Research, 2004, 45, 2080-2087.	4.2	29
372	Cholesteryl Ester Transfer Protein and Coronary Artery Disease. Circulation, 2004, 110, 1338-1340.	1.6	32
373	Endothelial Lipase Promotes the Catabolism of ApoB-Containing Lipoproteins. Circulation Research, 2004, 94, 1554-1561.	4.5	67
374	Structural basis of endothelial lipase tropism for HDL. FASEB Journal, 2004, 18, 1891-1893.	0.5	13
375	COX-2-Derived Prostacyclin Confers Atheroprotection on Female Mice. Science, 2004, 306, 1954-1957.	12.6	403
376	NARC-1/PCSK9 and Its Natural Mutants. Journal of Biological Chemistry, 2004, 279, 48865-48875.	3.4	544
377	The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nature Medicine, 2004, 10, 966-973.	30.7	318
378	Endothelial Lipase: A Modulator of Lipoprotein Metabolism Upregulated by Inflammation. Trends in Cardiovascular Medicine, 2004, 14, 202-206.	4.9	44

#	Article	IF	Citations
379	Inhibition of cholesteryl ester transfer protein activity: A new therapeutic approach to raising high-density lipoprotein. Current Atherosclerosis Reports, 2004, 6, 398-405.	4.8	30
380	The triglyceride–high-density lipoprotein axis: An important target of therapy?. American Heart Journal, 2004, 148, 211-221.	2.7	82
381	Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes. New England Journal of Medicine, 2004, 350, 1495-1504.	27.0	4,527
382	Antimitogenic effects of HDL and APOE mediated by Cox-2–dependent IP activation. Journal of Clinical Investigation, 2004, 113, 609-618.	8.2	41
383	Therapy to reduce risk of coronary heart disease. Clinical Cardiology, 2003, 26, 2-8.	1.8	17
384	Effects of nonstatin lipid drug therapy on high-density lipoprotein metabolism. American Journal of Cardiology, 2003, 91, 18-23.	1.6	89
385	Lipid and apolipoprotein ratios: association with coronary artery disease and effects of rosuvastatin compared with atorvastatin, pravastatin, and simvastatin. American Journal of Cardiology, 2003, 91, 20-23.	1.6	67
386	Regulation of reverse cholesterol transport and clinical implications. American Journal of Cardiology, 2003, 92, 42-49.	1.6	168
387	A tetracycline-regulated adenoviral expression system forin vivo delivery of transgenes to lung and liver. Journal of Gene Medicine, 2003, 5, 567-575.	2.8	20
388	Evidence That Hepatic Lipase and Endothelial Lipase Have Different Substrate Specificities for High-Density Lipoprotein Phospholipids. Biochemistry, 2003, 42, 13778-13785.	2.5	43
389	Management of selected lipid abnormalities: hypertriglyceridemia, isolated low HDL-cholesterol, lipoprotein(a), and lipid abnormalities in renal diseases and following solid organ transplantation. Cardiology Clinics, 2003, 21, 377-392.	2.2	7
390	Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: Evidence for an antiinflammatory role for lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2730-2735.	7.1	229
391	Prostacylin Receptor Activation Inhibits Proliferation of Aortic Smooth Muscle Cells by Regulating cAMP Response Element-Binding Protein- and Pocket Protein-Dependent Cyclin A Gene Expression. Molecular Pharmacology, 2003, 64, 249-258.	2.3	50
392	Effects of Nonlipolytic Ligand Function of Endothelial Lipase on High Density Lipoprotein Metabolism in Vivo. Journal of Biological Chemistry, 2003, 278, 40688-40693.	3.4	53
393	Genetics of Increased HDL Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1710-1712.	2.4	26
394	The Metabolic Syndrome. Circulation, 2003, 108, 1546-1551.	1.6	422
395	High-Density Lipoproteins as an Emerging Therapeutic Target for Atherosclerosis. JAMA - Journal of the American Medical Association, 2003, 290, 2322.	7.4	50
396	Guggulipid for the Treatment of Hypercholesterolemia. JAMA - Journal of the American Medical Association, 2003, 290, 765.	7.4	205

#	Article	IF	Citations
397	Cholesteryl Ester Transfer Protein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 160-167.	2.4	780
398	Endothelial Cells Secrete Triglyceride Lipase and Phospholipase Activities in Response to Cytokines as a Result of Endothelial Lipase. Circulation Research, 2003, 92, 644-650.	4.5	115
399	Apolipoprotein A-I Deficiency Results in Markedly Increased Atherosclerosis in Mice Lacking the LDL Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1914-1920.	2.4	90
400	Dose-Dependent Acceleration of High-Density Lipoprotein Catabolism by Endothelial Lipase. Circulation, 2003, 108, 2121-2126.	1.6	130
401	Endogenously Produced Endothelial Lipase Enhances Binding and Cellular Processing of Plasma Lipoproteins via Heparan Sulfate Proteoglycan-mediated Pathway. Journal of Biological Chemistry, 2003, 278, 34331-34338.	3.4	103
402	Overexpression of Apolipoprotein A-I Promotes Reverse Transport of Cholesterol From Macrophages to Feces In Vivo. Circulation, 2003, 108, 661-663.	1.6	403
403	Acute inflammation increases selective uptake of HDL cholesteryl esters into adrenals of mice overexpressing human sPLA ₂ . American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E403-E411.	3.5	31
404	Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. Journal of Clinical Investigation, 2003, 111, 357-362.	8.2	197
405	Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. Journal of Clinical Investigation, 2003, 111, 1795-1803.	8.2	225
406	Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. Journal of Clinical Investigation, 2003, 111, 1795-1803.	8.2	421
407	Normal Production Rate of Apolipoprotein B in LDL Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 989-994.	2.4	43
408	Human Secretory Phospholipase A2Mediates Decreased Plasma Levels of HDL Cholesterol and ApoA-I in Response to Inflammation in Human ApoA-I Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1213-1218.	2.4	117
409	Identification of Genetic Variants in Endothelial Lipase in Persons With Elevated High-Density Lipoprotein Cholesterol. Circulation, 2002, 106, 1321-1326.	1.6	130
410	Lipase H, a New Member of the Triglyceride Lipase Family Synthesized by the Intestine. Genomics, 2002, 80, 268-273.	2.9	40
411	Lipases and HDL metabolism. Trends in Endocrinology and Metabolism, 2002, 13, 174-178.	7.1	77
412	High-density lipoproteins and atherosclerosis. American Journal of Cardiology, 2002, 90, 62-70.	1.6	110
413	Characterization of the lipolytic activity of endothelial lipase. Journal of Lipid Research, 2002, 43, 921-929.	4.2	277
414	Characterization of the lipolytic activity of endothelial lipase. Journal of Lipid Research, 2002, 43, 921-9.	4.2	234

#	Article	IF	Citations
415	A new feature on the cholesterol-lowering landscape. Nature Medicine, 2001, 7, 1282-1284.	30.7	31
416	Safety and effectiveness of Niaspan when added sequentially to a statin for treatment of dyslipidemia. American Journal of Cardiology, 2001, 87, 476-479.	1.6	92
417	Does Exercise Increase HDL Cholesterol in Those Who Need It the Most?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1097-1098.	2.4	47
418	Absence of $12/15$ -Lipoxygenase Expression Decreases Lipid Peroxidation and Atherogenesis in Apolipoprotein Eâ \in "Deficient Mice. Circulation, 2001, 103, 2277-2282.	1.6	225
419	The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. Journal of Clinical Investigation, 2001, 108, 1031-1040.	8.2	264
420	Endothelial lipase colon; a new member of the triglyceride lipase gene family. Current Opinion in Lipidology, 2000, 11, 141-147.	2.7	89
421	Genes influencing HDL metabolism: new perspectives and implications for atherosclerosis prevention. Trends in Molecular Medicine, 2000, 6, 170-175.	2.6	39
422	High-density lipoprotein metabolism: Molecular targets for new therapies for atherosclerosis. Current Atherosclerosis Reports, 2000, 2, 363-372.	4.8	30
423	Hepatic Expression of Apolipoprotein E Inhibits Progression of Atherosclerosis without Reducing Cholesterol Levels in LDL Receptor-Deficient Mice. Molecular Therapy, 2000, 1, 189-194.	8.2	44
424	Gene Transfer and Hepatic Overexpression of the HDL Receptor SR-BI Reduces Atherosclerosis in the Cholesterol-Fed LDL Receptor–Deficient Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 721-727.	2.4	317
425	Inflammatory Markers of Coronary Risk. New England Journal of Medicine, 2000, 343, 1179-1182.	27.0	232
426	The Endothelium and Lipoproteins: Insights from Recent Cell Biology and Animal Studies. Seminars in Thrombosis and Hemostasis, 2000, 26, 521-528.	2.7	40
427	Overexpression of Secretory Phospholipase A2 Causes Rapid Catabolism and Altered Tissue Uptake of High Density Lipoprotein Cholesteryl Ester and Apolipoprotein A-I. Journal of Biological Chemistry, 2000, 275, 10077-10084.	3.4	149
428	Prolonged Correction of Hyperlipidemia in Mice with Familial Hypercholesterolemia Using an Adeno-Associated Viral Vector Expressing Very-Low-Density Lipoprotein Receptor. Molecular Therapy, 2000, 2, 256-261.	8.2	63
429	Rapid Regression of Atherosclerosis Induced by Liver-Directed Gene Transfer of ApoE in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2162-2170.	2.4	103
430	Regression of Atherosclerosis Induced by Liver-Directed Gene Transfer of Apolipoprotein A-I in Mice. Circulation, 1999, 100, 1816-1822.	1.6	352
431	A novel endothelial-derived lipase that modulates HDL metabolism. Nature Genetics, 1999, 21, 424-428.	21.4	461
432	Role of fibrates in the management of hypertriglyceridemia. American Journal of Cardiology, 1999, 83, 30-35.	1.6	36

#	Article	IF	CITATIONS
433	Expression of serum amyloid A protein in the absence of the acute phase response does not reduce HDL cholesterol or apoA-I levels in human apoA-I transgenic mice. Journal of Lipid Research, 1999, 40, 648-653.	4.2	59
434	Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. Journal of Lipid Research, 1999, 40, 2134-2139.	4.2	139
435	ABC1: connecting yellow tonsils, neuropathy, and very low HDL. Journal of Clinical Investigation, 1999, 104, 1015-1017.	8.2	69
436	Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nature Medicine, 1998, 4, 1189-1192.	30.7	496
437	Lipoprotein(a) levels and heart transplantation atherosclerosis. American Heart Journal, 1998, 136, 329-334.	2.7	10
438	Increased Formation of Distinct F ₂ Isoprostanes in Hypercholesterolemia. Circulation, 1998, 98, 2822-2828.	1.6	266
439	Unravelling high density lipoprotein-apolipoprotein metabolism in human mutants and animal models. Current Opinion in Lipidology, 1996, 7, 117-123.	2.7	54
440	Apolipoprotein A-II Production Rate Is a Major Factor Regulating the Distribution of Apolipoprotein A-I Among HDL Subclasses LpA-I and LpA-I:A-II in Normolipidemic Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 306-312.	2.4	65
441	Quantitation of Plasma Apolipoproteins in the Primary and Secondary Prevention of Coronary Artery Disease. Annals of Internal Medicine, 1994, 120, 1012.	3.9	187
442	Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature, 1993, 365, 65-69.	27.8	472
443	Lipoprotein(a). JAMA - Journal of the American Medical Association, 1992, 267, 1109.	7.4	45
444	Clinical and Laboratory Findings in the Oculocerebrorenal Syndrome of Lowe, with Special Reference to Growth and Renal Function. New England Journal of Medicine, 1991, 324, 1318-1325.	27.0	127
445	ILRUN Promotes Atherosclerosis Through Lipid-Dependent and Lipid-Independent Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 0, , .	2.4	2