Yvonne M Ulrich-Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6819248/publications.pdf

Version: 2024-02-01

68 papers

7,533 citations

147801 31 h-index 63 g-index

68 all docs 68
docs citations

68 times ranked 8586 citing authors

#	Article	IF	CITATIONS
1	Limited cheese intake reduces HPA axis and behavioral stress responses in male rats. Physiology and Behavior, 2021, 242, 113614.	2.1	4
2	Sexual dimorphism in intestinal absorption and lymphatic transport of dietary lipids. Journal of Physiology, 2021, 599, 5015-5030.	2.9	7
3	Differential Regulation of the Glucocorticoid Receptor in a Rat Model of Inflammatory Pain. Anesthesia and Analgesia, 2020, 131, 298-306.	2.2	1
4	Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Hormones and Behavior, 2019, 115, 104557.	2.1	14
5	S150. Nightly Melatonin Administration Attenuates Olanzapine-Induced Disturbance of the Circadian System. Biological Psychiatry, 2019, 85, S354-S355.	1.3	O
6	Effects of combined glucocorticoid/mineralocorticoid receptor modulation (CORT118335) on energy balance, adiposity, and lipid metabolism in male rats. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E337-E349.	3.5	6
7	Prefrontal Cortex Regulates Chronic Stressâ€Induced Cardiovascular Susceptibility. Journal of the American Heart Association, 2019, 8, e014451.	3.7	33
8	High-fat diet exacerbates postoperative pain and inflammation in a sex-dependent manner. Pain, 2018, 159, 1731-1741.	4.2	31
9	Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21. Endocrinology, 2018, 159, 400-413.	2.8	28
10	Palatable Food Affects HPA Axis Responsivity and Forebrain Neurocircuitry in an Estrous Cycle-specific Manner in Female Rats. Neuroscience, 2018, 384, 224-240.	2.3	21
11	Adolescent environmental enrichment prevents behavioral and physiological sequelae of adolescent chronic stress in female (but not male) rats. Stress, 2018, 21, 464-473.	1.8	35
12	Prefrontal Cortical Regulation of Chronic Stressâ€Induced Cardiovascular Susceptibility. FASEB Journal, 2018, 32, 598.11.	0.5	0
13	The impact of psychological stress on cardiovascular function and health. Physiology and Behavior, 2017, 172, 1-2.	2.1	3
14	Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology, 2017, 158, 2124-2133.	2.8	30
15	Sucrose-induced plasticity in the basolateral amygdala in a  comfort' feeding paradigm. Brain Structure and Function, 2017, 222, 4035-4050.	2.3	10
16	Apolipoprotein A-IV constrains HPA and behavioral stress responsivity in a strain-dependent manner. Psychoneuroendocrinology, 2017, 86, 34-44.	2.7	4
17	High-fat diet increases pain behaviors in rats with or without obesity. Scientific Reports, 2017, 7, 10350.	3.3	46
18	Vesicular Glutamate Transporter 1 Knockdown in Infralimbic Prefrontal Cortex Augments Neuroendocrine Responses to Chronic Stress in Male Rats. Endocrinology, 2017, 158, 3579-3591.	2.8	29

#	Article	IF	Citations
19	Disruption of Glucagon-Like Peptide 1 Signaling in (i) Sim1 (i) Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	3.6	53
20	Disruption of Glucagon-Like Peptide 1 Signaling in $\langle i \rangle$ Sim1 $\langle i \rangle$ Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	3.6	10
21	HPA Axis Interactions with Behavioral Systems. , 2016, 6, 1897-1934.		59
22	Self-medication with sucrose. Current Opinion in Behavioral Sciences, 2016, 9, 78-83.	3.9	29
23	Statistical modeling implicates neuroanatomical circuit mediating stress relief by â€~comfort' food. Brain Structure and Function, 2016, 221, 3141-3156.	2.3	20
24	GABAergic Signaling within a Limbic-Hypothalamic Circuit Integrates Social and Anxiety-Like Behavior with Stress Reactivity. Neuropsychopharmacology, 2016, 41, 1530-1539.	5.4	41
25	Metabolic consequences of chronic intermittent mild stress exposure. Physiology and Behavior, 2015, 150, 24-30.	2.1	26
26	Introduction to the 2014 Neurobiology of Stress Special Issue. Physiology and Behavior, 2015, 150, 1.	2.1	0
27	Adipocyte glucocorticoid receptors mediate fat-to-brain signaling. Psychoneuroendocrinology, 2015, 56, 110-119.	2.7	32
28	Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake. Physiology and Behavior, 2015, 150, 43-52.	2.1	15
29	The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids. Physiology and Behavior, 2015, 150, 38-42.	2.1	7
30	Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats. Stress, 2015, 18, 221-232.	1.8	29
31	Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1076-E1084.	3.5	24
32	Stress exposure, food intake and emotional state. Stress, 2015, 18, 381-99.	1.8	128
33	Neuroendocrine Circuits Governing Energy Balance and Stress Regulation: Functional Overlap and Therapeutic Implications. Cell Metabolism, 2014, 19, 910-925.	16.2	87
34	Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology, 2014, 42, 98-105.	2.7	32
35	The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Hormones and Behavior, 2014, 65, 363-371.	2.1	56
36	Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats. Stress, 2014, 17, 484-493.	1.8	27

#	Article	IF	CITATIONS
37	Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology, 2014, 47, 178-188.	2.7	30
38	PPARÎ ³ and stress: Implications for aging. Experimental Gerontology, 2013, 48, 671-676.	2.8	31
39	Physiological Responses to Acute Psychological Stress Are Reduced by the PPARÎ ³ Agonist Rosiglitazone. Endocrinology, 2012, 153, 1279-1287.	2.8	25
40	Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. Journal of Comparative Neurology, 2012, 520, 2369-2394.	1.6	44
41	HPA axis dampening by limited sucrose intake: Reward frequency vs. caloric consumption. Physiology and Behavior, 2011, 103, 104-110.	2.1	44
42	"Snacking―causes long term attenuation of HPA axis stress responses and enhancement of brain FosB/deltaFosB expression in rats. Physiology and Behavior, 2011, 103, 111-116.	2.1	54
43	Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: Differential inputs to the anterior versus posterior subregions. Journal of Comparative Neurology, 2011, 519, 1301-1319.	1.6	67
44	Blood-Borne Angiotensin II Acts in the Brain to Influence Behavioral and Endocrine Responses to Psychogenic Stress. Journal of Neuroscience, 2011, 31, 15009-15015.	3.6	65
45	Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20529-20534.	7.1	175
46	Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 2009, 10, 397-409.	10.2	2,443
47	The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic–pituitary–adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology, 2008, 33, 659-669.	2.7	89
48	The Anteroventral Bed Nucleus of the Stria Terminalis Differentially Regulates Hypothalamic-Pituitary-Adrenocortical Axis Responses to Acute and Chronic Stress. Endocrinology, 2008, 149, 818-826.	2.8	94
49	Daily Limited Access to Sweetened Drink Attenuates Hypothalamic-Pituitary-Adrenocortical Axis Stress Responses. Endocrinology, 2007, 148, 1823-1834.	2.8	118
50	Bed Nucleus of the Stria Terminalis Subregions Differentially Regulate Hypothalamic–Pituitary–Adrenal Axis Activity: Implications for the Integration of Limbic Inputs. Journal of Neuroscience, 2007, 27, 2025-2034.	3.6	334
51	Estrogen potentiates adrenocortical responses to stress in female rats. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1173-E1182.	3.5	140
52	Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1128-R1135.	1.8	181
53	Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiology and Behavior, 2006, 88, 67-76.	2.1	124
54	Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E965-E973.	3.5	374

#	Article	IF	Citations
55	Hypoactivity of the Hypothalamo-Pituitary-Adrenocortical Axis during Recovery from Chronic Variable Stress. Endocrinology, 2006, 147, 2008-2017.	2.8	143
56	Sympatho-adrenal activity and hypothalamic–pituitary–adrenal axis regulation. Handbook of Behavioral Neuroscience, 2005, 15, 419-435.	0.0	4
57	Comparative analysis of ACTH and corticosterone sampling methods in rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E823-E828.	3.5	258
58	Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Frontiers in Neuroendocrinology, 2003, 24, 151-180.	5.2	1,332
59	Capsaicin-sensitive nerve fibers: A potential extra-ACTH mechanism participating in adrenal regeneration in rats. Microscopy Research and Technique, 2003, 61, 252-258.	2.2	8
60	Steroidogenic Factor-1 Is Essential for Compensatory Adrenal Growth Following Unilateral Adrenalectomy. Endocrinology, 2002, 143, 3122-3135.	2.8	84
61	SF-1, DAX-1, AND ACD: MOLECULAR DETERMINANTS OF ADRENOCORTICAL GROWTH AND STEROIDOGENESIS. Endocrine Research, 2002, 28, 597-607.	1.2	46
62	Adrenal Splanchnic Innervation Modulates Adrenal Cortical Responses to Dehydration Stress in Rats. Neuroendocrinology, 2002, 76, 79-92.	2.5	86
63	Capsaicin-sensitive adrenal sensory fibers participate in compensatory adrenal growth in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R877-R884.	1.8	12
64	Steroidogenic Factor-1 Is Essential for Compensatory Adrenal Growth Following Unilateral Adrenalectomy. Endocrinology, 2002, 143, 3122-3135.	2.8	18
65	Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from rat trigeminal ganglion: evidence for intraganglionic neurotransmission. Pain, 2001, 91, 219-226.	4.2	75
66	Rat Adrenal Transplants are Reinnervated: An Invalid Model of Denervated Adrenal Cortical Tissue. Journal of Neuroendocrinology, 2001, 12, 881-893.	2.6	17
67	Hyperinnervation during Adrenal Regeneration Influences the Rate of Functional Recovery. Neuroendocrinology, 2000, 71, 107-123.	2.5	41
68	Neural Modulation of Regenerating Adrenal Transplants. Endocrine Research, 2000, 26, 979-980.	1.2	0