## Tadeusz J Kawecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6818809/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Conceptual issues in local adaptation. Ecology Letters, 2004, 7, 1225-1241.                                                                                                                      | 6.4  | 2,964     |
| 2  | Experimental evolution. Trends in Ecology and Evolution, 2012, 27, 547-560.                                                                                                                      | 8.7  | 631       |
| 3  | Adaptation to Marginal Habitats. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 321-342.                                                                                        | 8.3  | 515       |
| 4  | A fitness cost of learning ability in Drosophila melanogaster. Proceedings of the Royal Society B:<br>Biological Sciences, 2003, 270, 2465-2469.                                                 | 2.6  | 249       |
| 5  | A Cost of Long-Term Memory in <i>Drosophila</i> . Science, 2005, 308, 1148-1148.                                                                                                                 | 12.6 | 235       |
| 6  | Experimental evolution of learning ability in fruit flies. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14274-14279.                               | 7.1  | 224       |
| 7  | Evolutionary biology of starvation resistance: what we have learned from <i>Drosophila</i> . Journal of Evolutionary Biology, 2007, 20, 1655-1664.                                               | 1.7  | 193       |
| 8  | Natural polymorphism affecting learning and memory in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13051-13055.               | 7.1  | 184       |
| 9  | The evolution of life histories in spatially heterogeneous environments: Optimal reaction norms revisited. Evolutionary Ecology, 1993, 7, 155-174.                                               | 1.2  | 175       |
| 10 | Accumulation of Deleterious Mutations and the Evolutionary Cost of Being a Generalist. American<br>Naturalist, 1994, 144, 833-838.                                                               | 2.1  | 175       |
| 11 | The differential genetic and environmental canalization of fitness components in Drosophila<br>melanogaster. Journal of Evolutionary Biology, 1995, 8, 539-557.                                  | 1.7  | 159       |
| 12 | FITNESS SENSITIVITY AND THE CANALIZATION OF LIFE-HISTORY TRAITS. Evolution; International Journal of Organic Evolution, 1994, 48, 1438-1450.                                                     | 2.3  | 156       |
| 13 | Evolutionary Consequences of Asymmetric Dispersal Rates. American Naturalist, 2002, 160, 333-347.                                                                                                | 2.1  | 156       |
| 14 | Demography of source?sink populations and the evolution of ecological niches. Evolutionary<br>Ecology, 1995, 9, 38-44.                                                                           | 1.2  | 153       |
| 15 | Effects of parental larval diet on egg size and offspring traits in <i>Drosophila</i> . Biology Letters, 2010, 6, 238-241.                                                                       | 2.3  | 129       |
| 16 | THE EVOLUTION OF GENETIC CANALIZATION UNDER FLUCTUATING SELECTION. Evolution; International Journal of Organic Evolution, 2000, 54, 1-12.                                                        | 2.3  | 116       |
| 17 | Influence of Plasticity and Learning on Evolution under Directional Selection. American Naturalist, 2007, 170, E47-E58.                                                                          | 2.1  | 113       |
| 18 | JUVENILE HORMONE AS A REGULATOR OF THE TRADE-OFF BETWEEN REPRODUCTION AND LIFE SPAN<br>INDROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2007, 61,<br>1980-1991. | 2.3  | 108       |

| #  | Article                                                                                                                                                                                                                | IF                | CITATIONS        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| 19 | An operating cost of learning in Drosophila melanogaster. Animal Behaviour, 2004, 68, 589-598.                                                                                                                         | 1.9               | 104              |
| 20 | Fitness Sensitivity and the Canalization of Life-History Traits. Evolution; International Journal of<br>Organic Evolution, 1994, 48, 1438.                                                                             | 2.3               | 103              |
| 21 | LEARNING ABILITY AND LONGEVITY: A SYMMETRICAL EVOLUTIONARY TRADE-OFF IN DROSOPHILA. Evolution;<br>International Journal of Organic Evolution, 2008, 62, 1294-1304.                                                     | 2.3               | 102              |
| 22 | LIFE-HISTORY CONSEQUENCES OF ADAPTATION TO LARVAL NUTRITIONAL STRESS IN <i>DROSOPHILA</i> .<br>Evolution; International Journal of Organic Evolution, 2009, 63, 2389-2401.                                             | 2.3               | 102              |
| 23 | Expression of genetic and environmental variation for life history characters on the usual and novel hosts in Callosobruchus maculatus (Coleoptera:Bruchidae). Heredity, 1995, 75, 70-76.                              | 2.6               | 98               |
| 24 | Predatory cannibalism in Drosophila melanogaster larvae. Nature Communications, 2013, 4, 1789.                                                                                                                         | 12.8              | 91               |
| 25 | DECLINE IN OFFSPRING VIABILITY AS A MANIFESTATION OF AGING IN DROSOPHILA MELANOGASTER.<br>Evolution; International Journal of Organic Evolution, 2001, 55, 1822-1831.                                                  | 2.3               | 86               |
| 26 | The Maintenance (or Not) of Polygenic Variation by Soft Selection in Heterogeneous Environments.<br>American Naturalist, 2004, 164, 70-84.                                                                             | 2.1               | 85               |
| 27 | Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nature<br>Communications, 2014, 5, 3482.                                                                                                | 12.8              | 83               |
| 28 | Adaptation to marginal habitats: contrasting influence of the dispersal rate on the fate of alleles<br>with small and large effects. Proceedings of the Royal Society B: Biological Sciences, 2000, 267,<br>1315-1320. | 2.6               | 82               |
| 29 | Evolutionary ecology of learning: insights from fruit flies. Population Ecology, 2010, 52, 15-25.                                                                                                                      | 1.2               | 73               |
| 30 | Sexual conflict drives male manipulation of female postmating responses in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8437-8444.     | 7.1               | 72               |
| 31 | THE EFFECT OF LEARNING ON EXPERIMENTAL EVOLUTION OF RESOURCE PREFERENCE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2004, 58, 757-767.                                          | 2.3               | 65               |
| 32 | Age and Size at Maturity in a Patchy Environment: Fitness Maximization versus Evolutionary Stability.<br>Oikos, 1993, 66, 309.                                                                                         | 2.7               | 53               |
| 33 | Adaptive plasticity of egg size in response to competition in the cowpea weevil, Callosobruchus<br>maculatus (Coleoptera: Bruchidae). Oecologia, 1995, 102, 81-85.                                                     | 2.0               | 50               |
| 34 | Sympatric Speciation via Habitat Specialization Driven by Deleterious Mutations. Evolution;<br>International Journal of Organic Evolution, 1997, 51, 1751.                                                             | 2.3               | 50               |
| 35 | GENETIC ARCHITECTURE OF DIFFERENCES BETWEEN POPULATIONS OF COWPEA WEEVIL (CALLOSOBRUCHUS)                                                                                                                              | ) Tj ETQq1<br>2.3 | 1 0.784314<br>48 |
| 36 | Male cognitive performance declines in the absence of sexual selection. Proceedings of the Royal<br>Society B: Biological Sciences, 2014, 281, 20132873.                                                               | 2.6               | 48               |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dietary restriction affects lifespan but not cognitive aging in <i>Drosophila melanogaster</i> . Aging<br>Cell, 2010, 9, 327-335.                                                                                         | 6.7 | 42        |
| 38 | Ecological and Evolutionary Consequences of Source-Sink Population Dynamics. , 2004, , 387-414.                                                                                                                           |     | 41        |
| 39 | Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in<br><i>Drosophila melanogaster</i> . MBio, 2017, 8, .                                                                                | 4.1 | 39        |
| 40 | THE EVOLUTION OF GENETIC CANALIZATION UNDER FLUCTUATING SELECTION. Evolution; International Journal of Organic Evolution, 2000, 54, 1.                                                                                    | 2.3 | 38        |
| 41 | Reduced learning ability as a consequence of evolutionary adaptation to nutritional stress in <i>Drosophila melanogaster</i> . Ecological Entomology, 2008, 33, 583-588.                                                  | 2.2 | 38        |
| 42 | Adaptive Host Preference and the Dynamics of Host–Parasitoid Interactions. Theoretical Population<br>Biology, 1999, 56, 307-324.                                                                                          | 1.1 | 37        |
| 43 | Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos, 2001, 92, 467-478.                                                                                                          | 2.7 | 35        |
| 44 | Influence of learning on range expansion and adaptation to novel habitats. Journal of Evolutionary<br>Biology, 2009, 22, 2201-2214.                                                                                       | 1.7 | 33        |
| 45 | SV40-Induced Expression of Calretinin Protects Mesothelial Cells from Asbestos Cytotoxicity and May<br>Be a Key Factor Contributing to Mesothelioma Pathogenesis. American Journal of Pathology, 2009, 174,<br>2324-2336. | 3.8 | 33        |
| 46 | Gut physiology mediates a tradeâ€off between adaptation to malnutrition and susceptibility to<br>foodâ€borne pathogens. Ecology Letters, 2015, 18, 1078-1086.                                                             | 6.4 | 33        |
| 47 | Pleiotropic Effects of methoprene-tolerant (Met), a Gene Involved in Juvenile Hormone Metabolism, on<br>Life History Traits in Drosophila melanogaster. Genetica, 2004, 122, 141-160.                                     | 1.1 | 31        |
| 48 | Experimental Evolution of Olfactory Memory in Drosophila melanogaster. Physiological and<br>Biochemical Zoology, 2007, 80, 399-405.                                                                                       | 1.5 | 31        |
| 49 | Fruit flies learn to avoid odours associated with virulent infection. Biology Letters, 2014, 10, 20140048.                                                                                                                | 2.3 | 31        |
| 50 | Chronic malnutrition favours smaller critical size for metamorphosis initiation in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2012, 25, 288-292.                                                   | 1.7 | 30        |
| 51 | The Influence of Learning on Evolution: A Mathematical Framework. Artificial Life, 2009, 15, 227-245.                                                                                                                     | 1.3 | 29        |
| 52 | Host diet mediates a negative relationship between abundance and diversity of <i>Drosophila</i> gut<br>microbiota. Ecology and Evolution, 2018, 8, 9491-9502.                                                             | 1.9 | 29        |
| 53 | Effects of inbreeding on aversive learning in <i>Drosophila</i> . Journal of Evolutionary Biology, 2010, 23, 2333-2345.                                                                                                   | 1.7 | 28        |
| 54 | Plastic and evolutionary responses of cell size and number to larval malnutrition in Drosophila melanogaster. Journal of Evolutionary Biology, 2011, 24, 897-903.                                                         | 1.7 | 26        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evolution of foraging behaviour in response to chronic malnutrition in <i>Drosophila<br/>melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3540-3546.        | 2.6 | 26        |
| 56 | Evolutionary conservatism of geographic variation in host preference in Callosobruchus maculatus.<br>Ecological Entomology, 2003, 28, 449-456.                                                    | 2.2 | 24        |
| 57 | Unisexual/Bisexual Breeding Complexes in Poeciliidae: Why do Males Copulate with Unisexual Females?.<br>Evolution; International Journal of Organic Evolution, 1988, 42, 1018.                    | 2.3 | 22        |
| 58 | Genetically idiosyncratic responses of Drosophila melanogaster populations to selection for improved learning ability. Journal of Evolutionary Biology, 2006, 19, 1265-1274.                      | 1.7 | 22        |
| 59 | No evidence that withinâ€group male relatedness reduces harm to females in<br><i><scp>D</scp>rosophila</i> . Ecology and Evolution, 2015, 5, 979-983.                                             | 1.9 | 21        |
| 60 | Sexâ€Biased Dispersal and Adaptation to Marginal Habitats. American Naturalist, 2003, 162, 415-426.                                                                                               | 2.1 | 19        |
| 61 | <i>Drosophila</i> rely on learning while foraging under semiâ€natural conditions. Ecology and Evolution, 2013, 3, 4139-4148.                                                                      | 1.9 | 18        |
| 62 | Adaptation to Abundant Low Quality Food Improves the Ability to Compete for Limited Rich Food in Drosophila melanogaster. PLoS ONE, 2012, 7, e30650.                                              | 2.5 | 18        |
| 63 | Quantitative genetics of learning ability and resistance to stress in <i>Drosophila melanogaster</i> .<br>Ecology and Evolution, 2015, 5, 543-556.                                                | 1.9 | 16        |
| 64 | Experimental evolution of post-ingestive nutritional compensation in response to a nutrient-poor diet. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202684.              | 2.6 | 15        |
| 65 | UNISEXUAL/BISEXUAL BREEDING COMPLEXES IN POECILIIDAE: WHY DO MALES COPULATE WITH UNISEXUAL FEMALES?. Evolution; International Journal of Organic Evolution, 1988, 42, 1018-1023.                  | 2.3 | 14        |
| 66 | Sexual selection shapes development and maturation rates inDrosophila. Evolution; International<br>Journal of Organic Evolution, 2017, 71, 304-314.                                               | 2.3 | 14        |
| 67 | The Genomic Architecture of Adaptation to Larval Malnutrition Points to a Trade-off with Adult Starvation Resistance in <i>Drosophila</i> . Molecular Biology and Evolution, 2021, 38, 2732-2749. | 8.9 | 14        |
| 68 | Prepupal Building Behavior in Drosophila melanogaster and Its Evolution under Resource and Time<br>Constraints. PLoS ONE, 2015, 10, e0117280.                                                     | 2.5 | 13        |
| 69 | An experimental test of the egg-ratio method: estimated versus observed death rates. Freshwater<br>Biology, 1992, 28, 237-248.                                                                    | 2.4 | 12        |
| 70 | Epistasis and maternal effects in experimental adaptation to chronic nutritional stress in <i>Drosophila</i> . Journal of Evolutionary Biology, 2013, 26, 2566-2580.                              | 1.7 | 12        |
| 71 | ldiosyncratic evolution of maternal effects in response to juvenile malnutrition in <i>Drosophila</i> .<br>Journal of Evolutionary Biology, 2015, 28, 876-884.                                    | 1.7 | 12        |
| 72 | Evolution of reduced postâ€copulatory molecular interactions in <i>Drosophila</i> populations lacking sperm competition. Journal of Evolutionary Biology, 2016, 29, 77-85.                        | 1.7 | 11        |

| #  | Article                                                                                                                                                                                 | IF                | CITATIONS         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 73 | Sexual selection favours good or bad genes for pathogen resistance depending on males' pathogen exposure. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190226. | 2.6               | 11                |
| 74 | Young queens of the harvesting antMessor semimfus avoid founding in places visited by conspecific workers. Insectes Sociaux, 1992, 39, 113-115.                                         | 1.2               | 10                |
| 75 | The value of complementary approaches in evolutionary research: reply to Magalhães and Matos.<br>Trends in Ecology and Evolution, 2012, 27, 650-651.                                    | 8.7               | 9                 |
| 76 | No trade-off between learning ability and parasitoid resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 2006, 19, 1359-1363.                                       | 1.7               | 8                 |
| 77 | The effect of learning on the evolution of new courtship behavior: A simulation model.<br>Environmental Epigenetics, 2015, 61, 1062-1072.                                               | 1.8               | 7                 |
| 78 | Sexual selection reveals a cost of pathogen resistance undetected in lifeâ€history assays. Evolution;<br>International Journal of Organic Evolution, 2020, 74, 338-348.                 | 2.3               | 7                 |
| 79 | Behavior and Neurobiology. , 2009, , 263-300.                                                                                                                                           |                   | 7                 |
| 80 | Adaptation to larval malnutrition does not affect fluctuating asymmetry in <i>Drosophila melanogaster</i> . Biological Journal of the Linnean Society, 2011, 104, 19-28.                | 1.6               | 6                 |
| 81 | The impact of learning on selection-driven speciation. Trends in Ecology and Evolution, 2013, 28, 68-69.                                                                                | 8.7               | 6                 |
| 82 | GENETIC ARCHITECTURE OF DIFFERENCES BETWEEN POPULATIONS OF COWPEA WEEVIL (CALLOSOBRUCHUS Evolution, 2003, 57, 274.                                                                      | ) Tj ETQq0<br>2.3 | 0 0 rgBT /Ov<br>5 |
| 83 | Virulent bacterial infection improves aversive learning performance in Drosophila melanogaster.<br>Brain, Behavior, and Immunity, 2014, 41, 152-161.                                    | 4.1               | 5                 |
| 84 | Habitat quality ranking depends on habitatâ€independent environmental factors: a model and results<br>from Callosobruchus maculatus. Functional Ecology, 1997, 11, 247-254.             | 3.6               | 4                 |
| 85 | THE EFFECT OF LEARNING ON EXPERIMENTAL EVOLUTION OF RESOURCE PREFERENCE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2004, 58, 757.               | 2.3               | 4                 |
| 86 | Sex-linked altruism: A stepping-stone in the evolution of social behavior?. Journal of Evolutionary<br>Biology, 1991, 4, 487-500.                                                       | 1.7               | 3                 |
| 87 | Experimental evolution of slowed cognitive aging in <i>Drosophila melanogaster</i> . Evolution;<br>International Journal of Organic Evolution, 2017, 71, 662-670.                       | 2.3               | 3                 |
| 88 | Evidence for epistasis: reply to Trouve et al Journal of Evolutionary Biology, 2004, 17, 1402-1404.                                                                                     | 1.7               | 1                 |
| 89 | Can Test-Tube Evolution Explain Biodiversity?. Trends in Ecology and Evolution, 2015, 30, 568-569.                                                                                      | 8.7               | 0                 |
| 90 | Fugitive Coexistence Mediated by Evolutionary Lag in Local Adaptation in Metapopulations. Annales<br>Zoologici Fennici, 2017, 54, 139-152.                                              | 0.6               | 0                 |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Adaptation to a bacterial pathogen in <i>Drosophila melanogaster</i> is not aided by sexual selection.<br>Ecology and Evolution, 2022, 12, e8543. | 1.9 | 0         |