
John Brognard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6818538/publications.pdf Version: 2024-02-01

IOHN RROCNARD

#	Article	IF	CITATIONS
1	PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Molecular Cell, 2007, 25, 917-931.	9.7	527
2	Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. Journal of Clinical Investigation, 2003, 111, 81-90.	8.2	464
3	Cancer-Associated Protein Kinase C Mutations Reveal Kinase's Role as Tumor Suppressor. Cell, 2015, 160, 489-502.	28.9	285
4	Tobacco components stimulate Akt-dependent proliferation and NFκB-dependent survival in lung cancer cells. Carcinogenesis, 2005, 26, 1182-1195.	2.8	266
5	Novel PI Analogues Selectively Block Activation of the Pro-survival Serine/Threonine Kinase Akt. Journal of the American Chemical Society, 2003, 125, 1144-1145.	13.7	206
6	The mRNA Surveillance Protein hSMG-1 Functions in Genotoxic Stress Response Pathways in Mammalian Cells. Molecular Cell, 2004, 14, 585-598.	9.7	202
7	Protein kinase signaling networks in cancer. Current Opinion in Genetics and Development, 2011, 21, 4-11.	3.3	202
8	Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma. Cancer Cell, 2015, 27, 85-96.	16.8	188
9	The Phosphatase PHLPP Controls the Cellular Levels of Protein Kinase C. Journal of Biological Chemistry, 2008, 283, 6300-6311.	3.4	180
10	The F Box Protein Fbx6 Regulates Chk1 Stability and Cellular Sensitivity to Replication Stress. Molecular Cell, 2009, 35, 442-453.	9.7	170
11	PHLiPPing the switch on Akt and protein kinase C signaling. Trends in Endocrinology and Metabolism, 2008, 19, 223-230.	7.1	169
12	Protein Kinase Cδ Deficiency Causes Mendelian Systemic Lupus Erythematosus With B Cellâ€Đefective Apoptosis and Hyperproliferation. Arthritis and Rheumatism, 2013, 65, 2161-2171.	6.7	155
13	Preferential Inhibition of Akt and Killing of Akt-Dependent Cancer Cells by Rationally Designed Phosphatidylinositol Ether Lipid Analogues. Cancer Research, 2004, 64, 2782-2792.	0.9	126
14	Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants. Cell Death and Differentiation, 2002, 9, 893-904.	11.2	82
15	Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends in Pharmacological Sciences, 2017, 38, 438-447.	8.7	81
16	Cancer-Associated Loss-of-Function Mutations Implicate DAPK3 as a Tumor-Suppressing Kinase. Cancer Research, 2011, 71, 3152-3161.	0.9	68
17	Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nature Communications, 2014, 5, 3901.	12.8	68
18	Targeted genetic dependency screen facilitates identification of actionable mutations in FGFR4, MAP3K9, and PAK5 in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12426-12431.	7.1	53

John Brognard

#	Article	IF	CITATIONS
19	Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nature Communications, 2021, 12, 4055.	12.8	51
20	Common Polymorphism in the Phosphatase PHLPP2 Results in Reduced Regulation of Akt and Protein Kinase C. Journal of Biological Chemistry, 2009, 284, 15215-15223.	3.4	36
21	Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis. Cancer Research, 2016, 76, 724-735.	0.9	36
22	Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy. Journal of Biological Chemistry, 2015, 290, 15406-15420.	3.4	34
23	Protein kinase Cα gain-of-function variant in Alzheimer's disease displays enhanced catalysis by a mechanism that evades down-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5497-E5505.	7.1	34
24	Discrepancies in Cancer Genomic Sequencing Highlight Opportunities for Driver Mutation Discovery. Cancer Research, 2014, 74, 6390-6396.	0.9	33
25	Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3957-65.	7.1	33
26	Shipping Out MEK Inhibitor Resistance with SHP2 Inhibitors. Cancer Discovery, 2018, 8, 1210-1212.	9.4	32
27	TNIK Is a Therapeutic Target in Lung Squamous Cell Carcinoma and Regulates FAK Activation through Merlin. Cancer Discovery, 2021, 11, 1411-1423.	9.4	26
28	Survival of Head and Neck Cancer Cells Relies upon LZK Kinase-Mediated Stabilization of Mutant p53. Cancer Research, 2017, 77, 4961-4972.	0.9	22
29	Upregulation of MLK4 promotes migratory and invasive potential of breast cancer cells. Oncogene, 2019, 38, 2860-2875.	5.9	19
30	Somatically mutated <scp>ABL</scp> 1 is an actionable and essential <scp>NSCLC</scp> survival gene. EMBO Molecular Medicine, 2016, 8, 105-116.	6.9	18
31	Using large-scale genomics data to identify driver mutations in lung cancer: methods and challenges. Pharmacogenomics, 2015, 16, 1149-1160.	1.3	15
32	The protein kinase MAP3K19 phosphorylates MAP2Ks and thereby activates ERK and JNK kinases and increases viability of KRAS-mutant lung cancer cells. Journal of Biological Chemistry, 2020, 295, 8470-8479.	3.4	14
33	Tobacco Carcinogen-Induced Cellular Transformation Increases Akt Activation In Vitro and In Vivo. Chest, 2004, 125, 101S-102S.	0.8	11
34	Truncation- and motif-based pan-cancer analysis reveals tumor-suppressing kinases. Science Signaling, 2018, 11, .	3.6	10
35	Signaling pathway screening platforms are an efficient approach to identify therapeutic targets in cancers that lack known driver mutations: a case report for a cancer of unknown primary origin. Npj Genomic Medicine, 2018, 3, 15.	3.8	9
36	Orange is the new black: Kinases are the new master regulators of tumor suppression. IUBMB Life, 2019, 71, 738-748.	3.4	9

John Brognard

#	Article	IF	CITATIONS
37	New Therapeutic Opportunities for the Treatment of Squamous Cell Carcinomas: A Focus on Novel Driver Kinases. International Journal of Molecular Sciences, 2021, 22, 2831.	4.1	9
38	Combing the Cancer Genome for Novel Kinase Drivers and New Therapeutic Targets. Cancers, 2019, 11, 1972.	3.7	8
39	TARGET trial: Molecular profiling of circulating tumour DNA to stratify patients to early phase clinical trials Journal of Clinical Oncology, 2016, 34, TPS11614-TPS11614.	1.6	8
40	Degraders: The Ultimate Weapon Against Amplified Driver Kinases in Cancer. Molecular Pharmacology, 2022, 101, 191-200.	2.3	5
41	Druggable Drivers of Lung Cancer. Oncotarget, 2013, 4, 1334-1335.	1.8	2
42	Reply. Arthritis and Rheumatology, 2014, 66, 229-230.	5.6	0