Hiroshi Umakoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6817653/publications.pdf

Version: 2024-02-01

143 papers 2,063 citations

257450 24 h-index 315739 38 g-index

144 all docs

144 docs citations

times ranked

144

1974 citing authors

#	Article	IF	CITATIONS
1	Preferential Adsorption of L-Tryptophan by L-Phospholipid Coated Porous Polymer Particles. Colloids and Surfaces B: Biointerfaces, 2022, , 112535.	5.0	5
2	Dependence of the Core–Shell Structure on the Lipid Composition of Nanostructured Lipid Carriers: Implications for Drug Carrier Design. ACS Applied Nano Materials, 2022, 5, 9958-9969.	5.0	7
3	Characterization of entrapment behavior of polyphenols in nanostructured lipid carriers and its effect on their antioxidative activity. Journal of Bioscience and Bioengineering, 2022, 134, 269-275.	2.2	4
4	Structure and Properties Characterization of Amphiphilic Dendrons Modified Lipid Membrane. Chemistry Letters, 2021, 50, 187-190.	1.3	3
5	Effects of Lipid Bilayers and Polarity of the Organic Substrate on the Belousov–Zhabotinsky Reaction. Membrane, 2021, 46, 233-240.	0.0	1
6	Preparation of Bilayer Molecular Assembly from Fatty Acid and Detergent. Kagaku Kogaku Ronbunshu, 2021, 47, 51-56.	0.3	2
7	Systematic Characterization of Nanostructured Lipid Carriers from Cetyl Palmitate/Caprylic Triglyceride/Tween 80 Mixtures in an Aqueous Environment. Langmuir, 2021, 37, 4284-4293.	3.5	14
8	Modulation of the Belousov–Zhabotinsky Reaction with Lipid Bilayers: Effects of Lipid Head Groups and Membrane Properties. Langmuir, 2021, 37, 6811-6818.	3.5	4
9	Quantitative Determination of Relative Permittivity Based on the Fluorescence Property of Pyrene Derivatives: An Interpretation of Hydrophobicity in Self-Assembled Aggregates of Nonionic Amphiphiles. Journal of Physical Chemistry B, 2021, 125, 6192-6200.	2.6	4
10	Investigation of Quercetin interaction behaviors with lipid bilayers: Toward understanding its antioxidative effect within biomembrane. Journal of Bioscience and Bioengineering, 2021, 132, 49-55.	2.2	3
11	Insight into the Exosomal Membrane: From Viewpoints of Membrane Fluidity and Polarity. Langmuir, 2021, 37, 11195-11202.	3.5	15
12	A Simple Dilution Method for Preparation of Different Aggregates from Oleic Acid/CHAPSO Bicelles. Journal of Nanoscience and Nanotechnology, 2021, 21, 5993-5999.	0.9	1
13	A Simple Method for Continuous Synthesis of Bicelles in Microfluidic Systems. Langmuir, 2021, 37, 12255-12262.	3.5	10
14	Enzymatic hydrolysis of cellulose recovered from ionic liquid-salt aqueous two-phase system. Journal of Bioscience and Bioengineering, 2020, 129, 624-631.	2.2	6
15	Characterization of pH-Responsive Self-Assembly Behaviors of Fatty Acid-Functionalized Prodrug. Biochemical Engineering Journal, 2020, 164, 107794.	3.6	1
16	A novel method of vesicle preparation by simple dilution of bicelle solution. Biochemical Engineering Journal, 2020, 162, 107725.	3.6	8
17	Changes Caused by Liposomes to the Belousov–Zhabotinsky Reaction. Journal of Physical Chemistry B, 2020, 124, 9862-9869.	2.6	2
18	Site Specific Analysis of Anionic Lipid by Membrane Surface-enhanced Raman Spectroscopy with Different Sized Gold Nanoparticles. Chemistry Letters, 2020, 49, 1107-1110.	1.3	1

#	Article	IF	Citations
19	<p>The Potential Anticancer Activity of 5-Fluorouracil Loaded in Cellulose Fibers Isolated from Rice Straw</p> . International Journal of Nanomedicine, 2020, Volume 15, 5417-5432.	6.7	36
20	Evaluation of Molecular Ordering in Bicelle Bilayer Membranes Based on Induced Circular Dichroism Spectra. Langmuir, 2020, 36, 3242-3250.	3.5	7
21	Silver Nanoparticle–Phospholipid Self–Assembly Systems for Membrane Surface– Enhanced Raman Spectroscopy Analysis. Membrane, 2020, 45, 187-192.	0.0	O
22	Nanotechnology for Food Engineering: Biomembrane and Nanocarriers. Journal of Chemistry, 2019, 2019, 1-3.	1.9	3
23	Melting-Temperature-Dependent Interactions of Ergosterol with Unsaturated and Saturated Lipids in Model Membranes. Langmuir, 2019, 35, 10640-10647.	3.5	12
24	Ergosterol-Induced Ordered Phase in Ternary Lipid Mixture Systems of Unsaturated and Saturated Phospholipid Membranes. Journal of Physical Chemistry B, 2019, 123, 6161-6168.	2.6	10
25	Membrane Surface-Enhanced Raman Spectroscopy for Cholesterol-Modified Lipid Systems: Effect of Gold Nanoparticle Size. ACS Omega, 2019, 4, 13687-13695.	3.5	21
26	Functional Hydration Behavior: Interrelation between Hydration and Molecular Properties at Lipid Membrane Interfaces. Journal of Chemistry, 2019, 2019, 1-15.	1.9	20
27	Effect of dehydrocholic acid conjugated with a hydrocarbon on a lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine. Colloids and Surfaces B: Biointerfaces, 2019, 181, 58-65.	5.0	3
28	Characterization of Ionic Liquid Aqueous Two-Phase Systems: Phase Separation Behaviors and the Hydrophobicity Index between the Two Phases. Journal of Physical Chemistry B, 2019, 123, 5866-5874.	2.6	16
29	Lipid-Surrounding Water Molecules Probed by Time-Resolved Emission Spectra of Laurdan. Langmuir, 2019, 35, 6762-6770.	3.5	20
30	Detection of L-Proline-Catalyzed Michael Addition Reaction in Model Biomembrane. Journal of Chemistry, 2019, 2019, 1-8.	1.9	5
31	Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophysical Journal, 2019, 116, 874-883.	0.5	24
32	Smart Preparation of Polydiacetylene Hydrogel Based on Self-Assembly of Tricosadiynoic Acid and 1-Oleoylglycerol (Monoolein). Journal of Chemical Engineering of Japan, 2019, 52, 311-316.	0.6	1
33	Aggregation of chlorophyll a induced in self-assembled membranes composed of DMPC and DHPC. Colloids and Surfaces B: Biointerfaces, 2019, 175, 403-408.	5.0	6
34	ã€Original Contributionã€'Potential Interaction Behavior of Lanosterol and Unsaturated Phosphocholine in Monolayer Membrane. Membrane, 2019, 44, 199-233.	0.0	1
35	Chiral Recognition / Conversion on Liposome. Membrane, 2019, 44, 69-75.	0.0	0
36	Characterization of Molecular Behaviors on Phospholipid Membrane Surface based on Membrane Surface-Enhanced Raman Spectroscopy Method. Vacuum and Surface Science, 2019, 62, 194-197.	0.1	0

#	Article	IF	Citations
37	Gel-Phase-like Ordered Membrane Properties Observed in Dispersed Oleic Acid/1-Oleoylglycerol Self-Assemblies: Systematic Characterization Using Raman Spectroscopy and a Laurdan Fluorescent Probe. Langmuir, 2018, 34, 2081-2088.	3.5	16
38	Design of Pyrene–Fatty Acid Conjugates for Real-Time Monitoring of Drug Delivery and Controllability of Drug Release. ACS Omega, 2018, 3, 3572-3580.	3.5	6
39	Direct Observation of Amyloid $\langle i \rangle \hat{l}^2 \langle i \rangle$ Behavior at Phospholipid Membrane Constructed on Gold Nanoparticles. International Journal of Analytical Chemistry, 2018, 2018, 1-7.	1.0	11
40	Systematic Characterization of DMPC/DHPC Self-Assemblies and Their Phase Behaviors in Aqueous Solution. Colloids and Interfaces, 2018, 2, 73.	2.1	14
41	Preparation and Characterization of Poly- <i>N</i> -isopropylacrylamide Cryogels containing Liposomes and Their Adsorption Properties of Tryptophan. Solvent Extraction Research and Development, 2018, 25, 37-46.	0.4	2
42	Effective Concentration of Ionic Liquids for Enhanced Saccharification of Cellulose. ChemEngineering, 2018, 2, 47.	2.4	5
43	Hydrolase-Like Activity Provided by Zinc(II) and Oleoyl-Histidine at Liposome Membrane Surface. Colloids and Interfaces, 2018, 2, 24.	2.1	1
44	Liposome Membranes Assist the <scp>l</scp> -Proline-catalyzed Aldol Reaction of Acetone and <i>p</i> -Nitrobenzaldehyde in Water. Chemistry Letters, 2018, 47, 931-934.	1.3	6
45	Characterization of DDAB/Cholesterol Vesicles and Its Comparison with Lipid/Cholesterol Vesicles. Journal of Nanoscience and Nanotechnology, 2018, 18, 1989-1994.	0.9	2
46	Tailor-made drug carrier: Comparison of formation-dependent physicochemical properties within self-assembled aggregates for an optimal drug carrier. Colloids and Surfaces B: Biointerfaces, 2017, 152, 269-276.	5.0	12
47	Liposomes Can Achieve Enantioselective C–C Bond Formation of an α-Amino Acid Derivative in Aqueous Media. ACS Omega, 2017, 2, 91-97.	3.5	10
48	Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer <i>p</i> -Aminodiphenylamine (PADPA). Langmuir, 2017, 33, 1984-1994.	3.5	13
49	Enantioselective Câ€"C Bond Formation Enhanced by Self-Assembly of Achiral Surfactants. ACS Omega, 2017, 2, 1447-1453.	3.5	4
50	Characterization of Liposome Membrane Containing Chlorophyll a Molecules and Its Photosensitized Functions. Journal of Nanoscience and Nanotechnology, 2017, 17, 4888-4893.	0.9	1
51	A Novel Role of Vesicles as Templates for the Oxidation and Oligomerization of ⟨i⟩p⟨ i⟩â€Aminodiphenylamine by Cytochrome ⟨i⟩c⟨ i⟩. Helvetica Chimica Acta, 2017, 100, e1700027.	1.6	0
52	Multi-Level Characterization of the Membrane Properties of Resveratrol-Incorporated Liposomes. Journal of Physical Chemistry B, 2017, 121, 4091-4098.	2.6	26
53	Induction of Chiral Recognition with Lipid Nanodomains Produced by Polymerization. Biomacromolecules, 2017, 18, 1180-1188.	5.4	17
54	Preferential Adsorption of <scp> < scp>-Histidine onto DOPC Sphingomyelin 3β-[<i>N< i>-(<i>N< i>′,<i>N< i>′-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids. Langmuir, 2017, 33, 3831-3838.</i></i></i></scp>	3.5	5

#	Article	IF	CITATIONS
55	Comparison of Physicochemical Membrane Properties of Vesicles Modified with Guanidinium Derivatives. Journal of Physical Chemistry B, 2017, 121, 9213-9222.	2.6	8
56	Development of Time-course Oxygen Binding Analysis for Hemoglobin-based Oxygen Carriers. Analytical Sciences, 2017, 33, 953-956.	1.6	3
57	Adsorption Behavior of Propranolol on Negatively-Charged Liposomes and Its Influence on Membrane Fluidity and Polarity. Journal of Nanoscience and Nanotechnology, 2017, 17, 1721-1728.	0.9	5
58	Effect of Stearylguanidinium-Modified POPC Vesicles on the Melting Behavior of tRNA Molecules. Journal of Physical Chemistry B, 2016, 120, 5662-5669.	2.6	1
59	Characterization of sorbitan surfactant-based vesicles at the molecular scale using NMR: Effect of acyl chain length vs. phospholipid composition. Colloids and Surfaces B: Biointerfaces, 2016, 144, 33-37.	5.0	4
60	Quantitative Monitoring of Microphase Separation Behaviors in Cationic Liposomes Using HHC, DPH, and Laurdan: Estimation of the Local Electrostatic Potentials in Microdomains. Langmuir, 2016, 32, 3630-3636.	3.5	16
61	Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. Langmuir, 2016, 32, 6176-6184.	3.5	61
62	In Situ Cell Surface Modification for Surface-enhanced Raman Analysis of Cell Membrane. Chemistry Letters, 2016, 45, 622-624.	1.3	2
63	Development of Easy, Harmless, and Energy-saving Water Cleanup Method Based on Self-flotation of Hollow Glass Beads Coated with Fatty Acids. Chemistry Letters, 2016, 45, 544-546.	1.3	4
64	Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy. Langmuir, 2016, 32, 7606-7612.	3.5	42
65	Effect of Boundary Edge in DOPC/DPPC/Cholesterol Liposomes on Acceleration of <scp>I</scp> -Histidine Preferential Adsorption. Langmuir, 2016, 32, 6011-6019.	3.5	8
66	Electrophoretic separation method for membrane poreâ€forming proteins in multilayer lipid membranes. Electrophoresis, 2016, 37, 762-768.	2.4	5
67	Liposomes modified with cardiolipin can act as a platform to regulate the potential flux of NADP + -dependent isocitrate dehydrogenase. Metabolic Engineering Communications, 2016, 3, 8-14.	3.6	11
68	Chiral Selective Adsorption of Ibuprofen on a Liposome Membrane. Journal of Physical Chemistry B, 2016, 120, 2790-2795.	2.6	33
69	Liposome membrane can induce self-cleavage of RNA that models the core fragments of hammerhead ribozyme. European Biophysics Journal, 2016, 45, 55-62.	2.2	2
70	Characterization of the physicochemical properties of phospholipid vesicles prepared in CO2/water systems at high pressure. Biointerphases, 2015, 10, 031005.	1.6	5
71	Partitioning of Hydrophobic Molecules to Liposome Membranes Can Induce Variations in their Micro-Polarity and Micro-Viscosity. Solvent Extraction Research and Development, 2015, 22, 79-85.	0.4	2
72	Investigation of Fatty Acid Ketohydrazone Modified Liposome's Properties as a Drug Carrier. Journal of Drug Delivery, 2015, 2015, 1-7.	2.5	3

#	Article	IF	CITATIONS
73	Liposome Membrane as a Platform for the <scp>l</scp> -Pro-Catalyzed Michael Addition of <i>trans</i> -β-Nitrostyrene and Acetone. Langmuir, 2015, 31, 12968-12974.	3.5	11
74	Pseudo-Interphase of Liposome Promotes 1,3-Dipolar Cycloaddition Reaction of Benzonitrile Oxide and <i>N</i> -Ethylmaleimide in Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 9772-9779.	2.6	17
75	Membrane Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Molecular Behavior of Lipid Assemblies. Analytical Chemistry, 2015, 87, 4772-4780.	6.5	38
76	Formation of lens-like vesicles induced via microphase separations on a sorbitan monoester membrane with different headgroups. Colloids and Surfaces B: Biointerfaces, 2015, 135, 235-242.	5.0	10
77	Chiral Recognition of <scp>l</scp> -Amino Acids on Liposomes Prepared with <scp>l</scp> -Phospholipid. ACS Applied Materials & Interfaces, 2015, 7, 21065-21072.	8.0	69
78	High performance optical resolution with liposome immobilized hydrogel. Colloids and Surfaces B: Biointerfaces, 2015, 136, 256-261.	5.0	7
79	Homochiral oligomerization of L-histidine in the presence of liposome membranes. Colloid and Polymer Science, 2015, 293, 3649-3653.	2.1	4
80	Comparison of the Interfacial Properties of Span 80 Vesicle, W/O Emulsions and Liposomes. Solvent Extraction Research and Development, 2014, 21, 191-199.	0.4	0
81	Relationship between the mobility of phosphocholine headgroup and the protein–liposome interaction: A dielectric spectroscopic study. Colloids and Surfaces B: Biointerfaces, 2014, 116, 343-350.	5.0	13
82	Development of metal affinity-immobilized liposome chromatography and its basic characteristics. Biochemical Engineering Journal, 2014, 84, 66-73.	3.6	8
83	Systematical Characterization of Phase Behaviors and Membrane Properties of Fatty Acid/Didecyldimethylammonium Bromide Vesicles. Langmuir, 2014, 30, 12721-12728.	3.5	38
84	Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chemical Communications, 2014, 50, 10177-10197.	4.1	115
85	Membrane interaction between Span 80 vesicle and phospholipid vesicle (liposome): Span 80 vesicle can perturb and hemifuse with liposomal membrane. Colloids and Surfaces B: Biointerfaces, 2013, 106, 258-264.	5.0	21
86	Growth behavior of $\hat{Al^2}$ protofibrils on liposome membranes and their membrane perturbation effect. Biochemical Engineering Journal, 2013, 71, 81-88.	3.6	9
87	Heterogeneous Cationic Liposomes Modified with 3β-{ <i>N</i> N,i>-[(⟨i⟩N <td>3.5</td> <td>24</td>	3.5	24
88	Detection of Nanosized Ordered Domains in DOPC/DPPC and DOPC/Ch Binary Lipid Mixture Systems of Large Unilamellar Vesicles Using a TEMPO Quenching Method. Langmuir, 2013, 29, 4830-4838.	3.5	104
89	Enhanced Cytotoxicity for Colon 26 Cells Using Doxorubicin-Loaded Sorbitan Monooleate (Span 80) Vesicles. International Journal of Biological Sciences, 2013, 9, 142-148.	6.4	12
90	Use Liposome as a Designable Platform for Molecular Recognition ~ from "Statistical Separation―to "Recognitive Separation―~. Solvent Extraction Research and Development, 2013, 20, 1-13.	0.4	14

#	Article	IF	Citations
91	Comparison of Partitioning Behaviors of L-/D-Trpin Solvent-Water System and Liposome Membrane System. Solvent Extraction Research and Development, 2013, 20, 213-217.	0.4	7
92	A new biosensing by Dielectric Dispersion Analysis of interaction between lipid membrane of liposome and target biomolecules up to 20 GHz range. , 2012, , .		6
93	Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin <i>Eucheuma serra</i> Agglutinin Isolated from a Marine Red Alga. Journal of Drug Delivery, 2012, 2012, 1-11.	2.5	26
94	Formation of spherulitic amyloid \hat{l}^2 aggregate by anionic liposomes. Biochemical and Biophysical Research Communications, 2012, 426, 165-171.	2.1	7
95	Modulation of yeast hexokinase on bio-inspired membranes. Biochemical Engineering Journal, 2012, 69, 138-143.	3.6	8
96	Hydrophobic Properties of tRNA with Varied Conformations Evaluated by an Aqueous Two-Phase System. International Journal of Biological Sciences, 2012, 8, 1188-1196.	6.4	6
97	Secondary nucleation of Al ² fibrils on liposome membrane. AICHE Journal, 2012, 58, 3625-3632.	3.6	6
98	A "Membranome― Based Approach toward "Bio-Inspired Membrane― Membrane, 2012, 37, 264-269.	0.0	1
99	Conformational change of single-stranded RNAs induced by liposome binding. Nucleic Acids Research, 2011, 39, 8891-8900.	14.5	35
100	Oxidative Stress Can Affect the Gene Silencing Effect of DOTAP Liposome in an <i>In Vitro </i> Translation System. International Journal of Biological Sciences, 2011, 7, 253-260.	6.4	7
101	Relationship between the mobility of phosphocholine headgroups of liposomes and the hydrophobicity at the membrane interface: A characterization with spectrophotometric measurements. Colloids and Surfaces B: Biointerfaces, 2011, 88, 221-230.	5.0	44
102	Span 80 vesicles have a more fluid, flexible and "wet―surface than phospholipid liposomes. Colloids and Surfaces B: Biointerfaces, 2011, 87, 28-35.	5.0	61
103	Sensitivity Enhancement of Leakage Current Microsensor for Detection of Target Protein by Using Protein Denaturant. IEEE Sensors Journal, 2011, 11, 2749-2755.	4.7	3
104	Protein Recognition by Stressed Liposome. Membrane, 2010, 35, 224-229.	0.0	0
105	Liposomes destabilize tRNA during heat stress. Biotechnology Journal, 2010, 5, 526-529.	3.5	14
106	${\rm A\hat{l}^2/Cu}$ -catalyzed oxidation of cholesterol in 1,2-dipalmitoyl phosphatidylcholine liposome membrane. Journal of Bioscience and Bioengineering, 2010, 109, 145-148.	2.2	13
107	Cationic liposome can interfere mRNA translation in an E. coli cell-free translation system. Biochemical Engineering Journal, 2010, 52, 38-43.	3.6	16
108	Chitosanase displayed on liposome can increase its activity and stability. Journal of Biotechnology, 2010, 146, 105-113.	3.8	8

#	Article	IF	Citations
109	Development of liposome-based mimics of superoxide dismutase and peroxidase based on the "LIPOzyme―concept. Journal of Biotechnology, 2010, 147, 59-63.	3.8	15
110	Preparation of superoxide dismutase LIPOzyme in hollow fiber membrane module. Desalination and Water Treatment, 2010, 17, 281-287.	1.0	2
111	Monitoring of membrane damages by dialysis treatment: Study with membrane chip analysis. Desalination and Water Treatment, 2010, 17, 45-51.	1.0	6
112	Characterization of Amyloid \hat{l}^2 Fibrils with An Aqueous Two-Phase System: Implications of Fibril Formation. Solvent Extraction Research and Development, 2010, 17, 121-128.	0.4	5
113	A leakage current microsensor for detection of interaction between an electrolyte-entrapping liposome and protein. , 2009, , .		2
114	A bio-thermochemical sensor of microbolometer immobilized liposome for detection of causative protein of Alzheimer's disease, amyloid beta., 2009,,.		1
115	Charged liposome affects the translation and folding steps of in vitro expression of green fluorescent protein. Journal of Bioscience and Bioengineering, 2009, 108, 450-454.	2.2	25
116	Negatively charged liposome as a potent inhibitor of post-translation during in vitro synthesis of green fluorescent protein. Biochemical Engineering Journal, 2009, 46, 154-160.	3.6	12
117	Polymethylthiophene/Nafion-modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid. Journal of Applied Electrochemistry, 2009, 39, 2035-2042.	2.9	18
118	Immobilization of intact liposomes on solid surfaces: A quartz crystal microbalance study. Journal of Colloid and Interface Science, 2009, 336, 902-907.	9.4	20
119	Calcein permeation across phosphatidylcholine bilayer membrane: Effects of membrane fluidity, liposome size, and immobilization. Colloids and Surfaces B: Biointerfaces, 2009, 73, 156-160.	5.0	114
120	Role of liposome on recognition and folding of oxidized and fragmented superoxide dismutase for its re-activation. Biochemical Engineering Journal, 2009, 46, 313-319.	3.6	10
121	Cationic Liposome Inhibits Gene Expression in an E.coliCell–Free Translation System. Membrane, 2009, 34, 146-151.	0.0	5
122	Engineering Science of LIPOzyme Process Chemistry. Membrane, 2009, 34, 179-185.	0.0	1
123	Preparation of Hollow Fiber Immobilized Liposome Membrane. Membrane, 2009, 34, 272-280.	0.0	5
124	Membranomics Research on Interactions between Liposome Membranes with Membrane Chip Analysis. Membrane, 2009, 34, 342-350.	0.0	8
125	Medical Applications of Biointerface. Hyomen Kagaku, 2009, 30, 236-247.	0.0	0
126	Liposome Membrane Itself Can Affect Gene Expression in the <i>Escherichia coli</i> Cell-Free Translation System. Langmuir, 2008, 24, 10537-10542.	3.5	53

#	Article	IF	CITATIONS
127	Enhanced Release of Chitosanase from Streptomyces griseus through Direct Interaction of Liposome with Cell Membrane under Heat Stress. Journal of Bioscience and Bioengineering, 2008, 106, 602-605.	2.2	7
128	Liposome Modified with Mnâ^Porphyrin Complex Can Simultaneously Induce Antioxidative Enzyme-like Activity of Both Superoxide Dismutase and Peroxidase. Langmuir, 2008, 24, 4451-4455.	3.5	37
129	Liposome-Recruited Activity of Oxidized and Fragmented Superoxide Dismutase. Langmuir, 2008, 24, 350-354.	3.5	33
130	Characterization of Oxidized and Fragmented Superoxide Dismutase Recruited on Liposome Surface. Membrane, 2008, 33, 173-179.	0.0	6
131	Superoxide Dismutase-like Activity of Liposomes Modified with Dodecanoyl His andMetal Ions. Membrane, 2008, 33, 180-187.	0.0	2
132	Cutting–Edge of Membrane Stress Biotechnology. Membrane, 2008, 33, 300-306.	0.0	3
133	Immobilized-Liposome Sensor System for Detection of Proteins under Stress Conditions. Membrane, 2007, 32, 294-301.	0.0	23
134	Evaluation of temperature and guanidine hydrochloride-induced protein–liposome interactions by using immobilized liposome chromatography. Biochemical Engineering Journal, 2006, 29, 174-181.	3.6	32
135	Fluorescence study on the domain formation of N-dodecanoyl-l-tryptophan within a liposome membrane. Colloid and Polymer Science, 2006, 285, 239-243.	2.1	3
136	Detection of a heat stress-mediated interaction between protein and phospholipid membrane using dielectric measurement. Journal of Bioscience and Bioengineering, 2003, 95, 252-256.	2.2	22
137	Characterization and control of stimuli-induced membrane fusion of liposomes in the presence of proteins and stimuli responsive polymers. Biochemical Engineering Journal, 2002, 12, 7-19.	3.6	15
138	Conformationally Changed Cytochrome c-Mediated Fusion of Enzyme- and Substrate-Containing Liposomes. Biotechnology Progress, 1999, 15, 689-696.	2.6	24
139	Heat-Induced Translocation of Cytoplasmic \hat{l}^2 -Galactosidase across Inner Membrane of Escherichia coli. Biotechnology Progress, 1998, 14, 210-217.	2.6	19
140	Model System for Heat-Induced Translocation of Cytoplasmic \hat{l}^2 -Galactosidase across Phospholipid Bilayer Membrane. Biotechnology Progress, 1998, 14, 218-226.	2.6	34
141	Utilization of Cell Response under Heat, Chemical, and Combined Stresses for Selective Recovery of Cytoplasmic β-Galactosidase from Escherichia coli Cells. Biotechnology Progress, 1998, 14, 909-912.	2.6	9
142	Extractive Cultivation of Recombinant Escherichia coli using Aqueous Two-Phase Systems for Production and Separation of Intracellular Heat Shock Proteins. Biotechnology Progress, 1996, 12, 51-56.	2.6	30
143	Extractive cultivation of Escherichia coli using poly(ethylene glycol)/phosphate aqueous two-phase systems to produce intracellular .betagalactosidase. Biotechnology Progress, 1995, 11, 202-207.	2.6	36