
David T Blewett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6817550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of Geophysical Research, 2000, 105, 20297-20305.	3.3	503
2	Mapping the FeO and TiO2content of the lunar surface with multispectral imagery. Journal of Geophysical Research, 1998, 103, 3679-3699.	3.3	344
3	Imaging of lunar surface maturity. Journal of Geophysical Research, 2000, 105, 20377-20386.	3.3	286
4	Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER. Science, 2011, 333, 1853-1856.	12.6	225
5	Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2mapping techniques. Journal of Geophysical Research, 1997, 102, 16319-16325.	3.3	194
6	The Evolution of Mercury's Crust: A Global Perspective from MESSENGER. Science, 2009, 324, 613-618.	12.6	194
7	Volcanism on Mercury: Evidence from the First MESSENGER Flyby. Science, 2008, 321, 69-72.	12.6	169
8	Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity. Science, 2008, 321, 66-69.	12.6	167
9	Color and Albedo Heterogeneity of Vesta from Dawn. Science, 2012, 336, 700-704.	12.6	166
10	The origin of lunar crater rays. Icarus, 2004, 170, 1-16.	2.5	141
11	Geology of the Caloris Basin, Mercury: A View from MESSENGER. Science, 2008, 321, 73-76.	12.6	140
12	Hollows on Mercury: MESSENGER Evidence for Geologically Recent Volatile-Related Activity. Science, 2011, 333, 1856-1859.	12.6	136
13	Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth and Planetary Science Letters, 2009, 285, 227-242.	4.4	135
14	Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth and Planetary Science Letters, 2009, 285, 263-271.	4.4	128
15	A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon. Icarus, 1997, 129, 217-231.	2.5	113
16	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	8.1	108
17	The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planetary and Space Science, 2011, 59, 1895-1909.	1.7	105
18	Mercury's hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. Journal of Geophysical Research E: Planets, 2013, 118, 1013-1032.	3.6	97

#	Article	IF	CITATIONS
19	Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 2015, 254, 287-305.	2.5	95
20	Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby. Science, 2008, 321, 62-65.	12.6	94
21	Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth and Planetary Science Letters, 2009, 285, 272-282.	4.4	88
22	Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth and Planetary Science Letters, 2009, 285, 297-308.	4.4	84
23	Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 2010, 209, 210-223.	2.5	82
24	The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 2014, 228, 364-374.	2.5	82
25	Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling. Icarus, 2004, 168, 257-276.	2.5	79
26	Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. Journal of Geophysical Research E: Planets, 2014, 119, 635-658.	3.6	79
27	Lunar pure anorthosite as a spectral analog for Mercury. Meteoritics and Planetary Science, 2002, 37, 1245-1254.	1.6	72
28	Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth and Planetary Science Letters, 2009, 285, 251-262.	4.4	67
29	Images of surface volatiles in Mercury's polar craters acquired by the MESSENGER spacecraft. Geology, 2014, 42, 1051-1054.	4.4	67
30	Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. Journal of Geophysical Research, 2011, 116, .	3.3	62
31	Remote sensing and geologic studies of the Schiller-Schickard region of the Moon. Journal of Geophysical Research, 1995, 100, 16959.	3.3	58
32	Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth and Planetary Science Letters, 2009, 285, 243-250.	4.4	58
33	Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 2015, 108, 98-107.	1.7	57
34	The distribution and extent of lunar swirls. Icarus, 2016, 273, 53-67.	2.5	54
35	Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System. Space Science Reviews, 2018, 214, 1.	8.1	53
36	Identification and measurement of neutron-absorbing elements on Mercury's surface. Icarus, 2010, 209, 195-209.	2.5	52

3

#	Article	IF	CITATIONS
37	Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR. Icarus, 2014, 240, 36-57.	2.5	52
38	A comparison of rayed craters on the Moon and Mercury. Journal of Geophysical Research E: Planets, 2013, 118, 2247-2261.	3.6	47
39	The apparent lack of lunar-like swirls on Mercury: Implications for the formation of lunar swirls and for the agent of space weathering. Icarus, 2010, 209, 239-246.	2.5	46
40	The surficial nature of lunar swirls as revealed by the Mini-RF instrument. Icarus, 2011, 215, 186-196.	2.5	44
41	Areas of permanent shadow in Mercury's south polar region ascertained by MESSENGER orbital imaging. Geophysical Research Letters, 2012, 39, .	4.0	43
42	Remote sensing studies of the Orientale Region of the Moon: A preâ€Galileo view. Geophysical Research Letters, 1991, 18, 2141-2144.	4.0	42
43	Mineralogical indicators of Mercury's hollows composition in MESSENGER color observations. Geophysical Research Letters, 2016, 43, 1450-1456.	4.0	42
44	Characterization of lunar swirls at Mare Ingenii: A model for space weathering at magnetic anomalies. Journal of Geophysical Research, 2011, 116, .	3.3	36
45	Craters hosting radarâ€bright deposits in Mercury's north polar region: Areas of persistent shadow determined from MESSENGER images. Journal of Geophysical Research E: Planets, 2013, 118, 26-36.	3.6	36
46	Remote sensing studies of the terrain northwest of Humorum Basin. Geophysical Research Letters, 1993, 20, 419-422.	4.0	35
47	Whole-disk spectrophotometric properties of Mercury: Synthesis of MESSENGER and ground-based observations. Icarus, 2010, 209, 101-124.	2.5	35
48	Analysis of Chang'E-2 brightness temperature data and production of high spatial resolution microwave maps of the Moon. Icarus, 2019, 319, 627-644.	2.5	33
49	Imaging Mercury's polar deposits during MESSENGER's lowâ€altitude campaign. Geophysical Research Letters, 2016, 43, 9461-9468.	4.0	31
50	Remote sensing and geological studies of the Hadleyâ€Apennine region of the Moon. Meteoritics and Planetary Science, 2001, 36, 701-730.	1.6	30
51	Analysis of MESSENGER highâ€resolution images of Mercury's hollows and implications for hollow formation. Journal of Geophysical Research E: Planets, 2016, 121, 1798-1813.	3.6	30
52	Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images. Icarus, 2014, 244, 41-59.	2.5	29
53	The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus, 2014, 240, 3-19.	2.5	28
54	Phase-ratio images of the surface of Mercury: Evidence for differences in sub-resolution texture. Icarus, 2014, 242, 142-148.	2.5	27

#	Article	IF	CITATIONS
55	Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'Eâ€3 mission. Geophysical Research Letters, 2017, 44, 3485-3492.	4.0	27
56	A comparison of the ultraviolet to near-infrared spectral properties of Mercury and the Moon as observed by MESSENGER. Icarus, 2010, 209, 179-194.	2.5	26
57	Spectral analysis of the bright materials on the asteroid Vesta. Icarus, 2014, 240, 73-85.	2.5	26
58	lgneous activity in the southern highlands of the Moon. Journal of Geophysical Research, 2002, 107, 5-1-5-7.	3.3	24
59	A Mariner 10 color study of Mercurian craters. Journal of Geophysical Research, 2007, 112, .	3.3	23
60	Dark spots on Mercury: A distinctive lowâ€reflectance material and its relation to hollows. Journal of Geophysical Research E: Planets, 2013, 118, 1752-1765.	3.6	23
61	Photometric correction of Mercury's global color mosaic. Planetary and Space Science, 2011, 59, 1873-1887.	1.7	22
62	Determination of iron metal optical constants: Implications for ultraviolet, visible, and nearâ€infrared remote sensing of airless bodies. Geophysical Research Letters, 2012, 39, .	4.0	22
63	Lunar optical maturity investigations: A possible recent impact crater and a magnetic anomaly. Journal of Geophysical Research, 2005, 110, .	3.3	19
64	A magnetic anomaly associated with an albedo feature near Airy crater in the lunar nearside highlands. Geophysical Research Letters, 2007, 34, .	4.0	16
65	Remote sensing studies of the Dionysius region of the Moon. Journal of Geophysical Research, 2006, 111, .	3.3	14
66	Vesta's north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes. Icarus, 2014, 244, 13-22.	2.5	14
67	Near-UV and near-IR reflectance studies of lunar swirls: Implications for nanosize iron content and the nature of anomalous space weathering. Icarus, 2021, 364, 114472.	2.5	13
68	Mercury's Hollows. , 2018, , 324-345.		12
69	Global variations in regolith properties on asteroid Vesta from Dawn's lowâ€altitude mapping orbit. Meteoritics and Planetary Science, 2016, 51, 2366-2386.	1.6	11
70	Mapping iron abundances on the surface of Mercury: Predicted spatial resolution of the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 2011, 59, 1654-1658.	1.7	10
71	Spectral analysis of the quadrangles Av-13 and Av-14 on Vesta. Icarus, 2015, 259, 181-193.	2.5	9
72	Lithologic variation within bright material on Vesta revealed by linear spectral unmixing. Icarus, 2016, 272, 16-31.	2.5	9

0

#	Article	IF	CITATIONS
73	Optical space weathering on Vesta: Radiative-transfer models and Dawn observations. Icarus, 2016, 265, 161-174.	2.5	9
74	Spectral Reflectance Constraints on the Composition and Evolution of Mercury's Surface. , 2018, , 191-216.		9
75	Spectra of the Wells lunar glass simulants: New old data for reflectance modeling. Journal of Geophysical Research E: Planets, 2014, 119, 925-940.	3.6	8
76	A spectral survey of the Crisium Basin Region of the Moon. Geophysical Research Letters, 1995, 22, 3059-3062.	4.0	7
77	Optical constants of iron and nickel metal and an assessment of their relative influences on silicate mixture spectra from the FUV to the NIR. Icarus, 2019, 317, 229-241.	2.5	7
78	A New Method for Simulation of Lunar Microwave Brightness Temperatures and Evaluation of Chang'Eâ€⊋ MRM Data Using Thermal Constraints From Diviner. Journal of Geophysical Research E: Planets, 2019, 124, 1433-1450.	3.6	7
79	Correction to "Lunar swirls: Examining crustal magnetic anomalies and space weathering trends― Journal of Geophysical Research, 2011, 116, .	3.3	4
80	MESSENGER at Mercury: Early orbital operations. Acta Astronautica, 2014, 93, 509-515.	3.2	4
81	Volcanic Processes in the Gassendi Region of the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006034.	3.6	4
82	Optical constants and diffuse reflectance of opaque minerals: A modeling study using magnetite. Icarus, 2021, 361, 114331.	2.5	4
83	Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron. Icarus, 2014, 243, 27-30.	2.5	3
84	The ungrouped achondrite Northwest Africa (NWA) 7325: Spectral reflectance properties and implications for parent body identification. Icarus, 2018, 311, 384-393.	2.5	3
85	Temperatures of the Lacus Mortis Region of the Moon. Earth and Space Science, 2022, 9, .	2.6	2
86	Science Goals and Mission Concept for a Landed Investigation of Mercury. Planetary Science Journal, 2022, 3, 68.	3.6	2
87	Hollows (Mercury). , 2015, , 935-937.		1
88	Introduction to the special issue of Icarus on "Mercury after Two MESSENGER Flybys― Icarus, 2010, 209, 1-2.	2.5	0
89	Antipodal Terrain. , 2014, , 1-3.		0

90 One the Case For Landed Mercury Science. , 2021, 53, .

#	Article	IF	CITATIONS
91	The case for landed Mercury science. Experimental Astronomy, 0, , 1.	3.7	Ο
92	Hollows (Mercury). , 2014, , 1-4.		0
93	Antipodal Terrain. , 2015, , 81-83.		Ο