Jose Luis Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo production of pederin by labrenzin pathway expansion. Metabolic Engineering Communications, 2022, 14, e00198.	3.6	3
2	Production of 11αâ€hydroxysteroids from sterols in a single fermentation step by <i>Mycolicibacterium smegmatis</i> . Microbial Biotechnology, 2021, 14, 2514-2524.	4.2	12
3	Identification of <scp><i>trans</i>â€AT</scp> polyketide clusters in two marine bacteria reveals cryptic similarities between distinct symbiosis factors. Environmental Microbiology, 2021, 23, 2509-2521.	3.8	9
4	Engineering the Steroid Hydroxylating System from Cochliobolus lunatus in Mycolicibacterium smegmatis. Microorganisms, 2021, 9, 1499.	3.6	7
5	Identification of the EdcR Estrogen-Dependent Repressor in Caenibius tardaugens NBRC 16725: Construction of a Cellular Estradiol Biosensor. Genes, 2021, 12, 1846.	2.4	3
6	Unraveling the 17β-Estradiol Degradation Pathway in Novosphingobium tardaugens NBRC 16725. Frontiers in Microbiology, 2020, 11, 588300.	3.5	29
7	Heterologous production and biochemical characterization of a new highly glucose tolerant GH1 β-glucosidase from Anoxybacillus thermarum. Process Biochemistry, 2020, 99, 1-8.	3.7	11
8	Identification and expression of the 11βâ€steroid hydroxylase fromCochliobolus lunatusinCorynebacterium glutamicum. Microbial Biotechnology, 2019, 12, 856-868.	4.2	15
9	Degradation of Aromatic Compounds in Pseudomonas: A Systems Biology View. , 2019, , 639-687.		2
10	Bacterial Metabolism of Steroids. , 2019, , 315-336.		4
11	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
12	Effect of <i>Arthrospira</i> supplementation on <i>Oreochromis niloticus</i> gut microbiota and flesh quality. Aquaculture Research, 2019, 50, 1448-1458.	1.8	6
13	Quantifying dynamic mechanisms of auto-regulation in Escherichia coli with synthetic promoter in response to varying external phosphate levels. Scientific Reports, 2019, 9, 2076.	3.3	12
14	Testosterone Degradative Pathway of Novosphingobium tardaugens. Genes, 2019, 10, 871.	2.4	30
15	Genome of Labrenzia sp. PHM005 Reveals a Complete and Active Trans-AT PKS Gene Cluster for the Biosynthesis of Labrenzin. Frontiers in Microbiology, 2019, 10, 2561.	3.5	18
16	One-Step Immobilization and Stabilization of a Recombinant Enterococcus faecium DBFIQ E36 l-Arabinose Isomerase for d-Tagatose Synthesis. Applied Biochemistry and Biotechnology, 2019, 188, 310-325.	2.9	9
17	Unravelling a new catabolic pathway of Câ€19 steroids in <i>Mycobacterium smegmatis</i> . Environmental Microbiology, 2018, 20, 1815-1827.	3.8	11
18	FLYCOP: metabolic modeling-based analysis and engineering microbial communities. Bioinformatics, 2018, 34, i954-i963.	4.1	37

Jose Luis Garcia

#	Article	IF	CITATIONS
19	New Insights on Steroid Biotechnology. Frontiers in Microbiology, 2018, 9, 958.	3.5	124
20	Effect of spirulina (Arthrospira platensis) supplementation on tilapia (Oreochromis niloticus) growth and stress responsiveness under hypoxia. Spanish Journal of Agricultural Research, 2018, 16, e0606.	0.6	3
21	Molecular characterization of a new gene cluster for steroid degradation in <i>Mycobacterium smegmatis</i> . Environmental Microbiology, 2017, 19, 2546-2563.	3.8	23
22	Unravelling the pleiotropic role of the <scp>M</scp> ce <scp>G</scp> <scp>ATP</scp> ase in <scp><i>M</i></scp> <i>ycobacterium smegmatis</i> . Environmental Microbiology, 2017, 19, 2564-2576.	3.8	20
23	Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 2017, 10, 1017-1024.	4.2	272
24	Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Microbial Biotechnology, 2017, 10, 1418-1425.	4.2	6
25	Molecular and functional analysis of the <i>mce4</i> operon in <i>Mycobacterium smegmatis</i> . Environmental Microbiology, 2017, 19, 3689-3699.	3.8	21
26	<i>Mycobacterium smegmatis</i> is a suitable cell factory for the production of steroidic synthons. Microbial Biotechnology, 2017, 10, 138-150.	4.2	49
27	Engineering <i>Mycobacterium smegmatis</i> for testosterone production. Microbial Biotechnology, 2017, 10, 151-161.	4.2	43
28	Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules, 2017, 22, 2164.	3.8	10
29	Production of 4-Ene-3-ketosteroids in Corynebacterium glutamicum. Catalysts, 2017, 7, 316.	3.5	9
30	Bacterial Metabolism of Steroids. , 2017, , 1-22.		5
31	Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biology, 2016, 17, 251.	8.8	131
32	Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology, 2016, 17, 32.	8.8	166
33	Whole genome sequencing of turbot (<i>Scophthalmus maximus</i> ; Pleuronectiformes): a fish adapted to demersal life. DNA Research, 2016, 23, 181-192.	3.4	150
34	Genome sequence of the olive tree, Olea europaea. GigaScience, 2016, 5, 29.	6.4	201
35	Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metabolic Engineering, 2016, 35, 46-54.	7.0	85
36	Complete mitochondrial genome ofPolymastia littoralis(Demospongiae, Polymastiidae). Mitochondrial DNA, 2016, 27, 312-313.	0.6	1

#	Article	IF	CITATIONS
37	Engineering alternative isobutanol production platforms. AMB Express, 2015, 5, 119.	3.0	21
38	New challenges for syngas fermentation: towards production of biopolymers. Journal of Chemical Technology and Biotechnology, 2015, 90, 1735-1751.	3.2	53
39	Genome Sequence of Pseudomonas azelaica Strain Aramco J. Genome Announcements, 2015, 3, .	0.8	8
40	Overexpression of Penicillin V Acylase from Streptomyces lavendulae and Elucidation of Its Catalytic Residues. Applied and Environmental Microbiology, 2015, 81, 1225-1233.	3.1	17
41	Draft Genome Sequence of Actinoplanes utahensis NRRL 12052, a Microorganism Involved in Industrial Production of Pharmaceutical Intermediates. Genome Announcements, 2015, 3, .	0.8	4
42	Characterization of the <scp>K</scp> st <scp>R</scp> 2 regulator responsible of the lower cholesterol degradative pathway in <scp><i>M</i></scp> <i>ycobacterium smegmatis</i> . Environmental Microbiology Reports, 2015, 7, 155-163.	2.4	10
43	Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Systematic and Applied Microbiology, 2015, 38, 462-471.	2.8	73
44	1,3-Propanediol production by Klebsiella oxytoca NRRL-B199 from glycerol. Medium composition and operational conditions. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 100-107.	4.4	17
45	Deciphering the Transcriptional Regulation of Cholesterol Catabolic Pathway in Mycobacteria. Journal of Biological Chemistry, 2014, 289, 17576-17588.	3.4	32
46	Pipelines for New Chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. Environmental Microbiology, 2014, 16, 9-18.	3.8	16
47	PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 2014, 35, 14-24.	11.4	63
48	Insights on the regulation of the phenylacetate degradation pathway from <scp><i>E</i></scp> <i>scherichia coli</i> . Environmental Microbiology Reports, 2014, 6, 239-250.	2.4	27
49	Clinical evaluation of a disposable amperometric magneto-genosensor for the detection and identification of Streptococcus pneumoniae. Journal of Microbiological Methods, 2014, 103, 25-28.	1.6	17
50	Plasmids as Tools for Containment. Microbiology Spectrum, 2014, 2, .	3.0	10
51	A highly conserved mycobacterial cholesterol catabolic pathway. Environmental Microbiology, 2013, 15, 2342-2359.	3.8	54
52	Genome of the Psychrophilic Bacterium Bacillus psychrosaccharolyticus, a Potential Source of 2′-Deoxyribosyltransferase for Industrial Nucleoside Synthesis. Genome Announcements, 2013, 1, .	0.8	6
53	Reward for <i><scp>B</scp>dellovibrio bacteriovorus</i> for preying on a polyhydroxyalkanoate producer. Environmental Microbiology, 2013, 15, 1204-1215.	3.8	29
54	Identification of a Missing Link in the Evolution of an Enzyme into a Transcriptional Regulator. PLoS ONE, 2013, 8, e57518.	2.5	13

#	Article	IF	CITATIONS
55	Genome Sequence of the Methanotrophic Poly-β-Hydroxybutyrate Producer Methylocystis parvus OBBP. Journal of Bacteriology, 2012, 194, 5709-5710.	2.2	31
56	Identification and Biochemical Evidence of a Medium-Chain-Length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus Predatory Hydrolytic Arsenal. Applied and Environmental Microbiology, 2012, 78, 6017-6026.	3.1	62
57	Bacterial Degradation of Benzoate. Journal of Biological Chemistry, 2012, 287, 10494-10508.	3.4	91
58	Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 2012, 5, 679-699.	4.2	139
59	Cholesterol metabolism in <i>Mycobacterium smegmatis</i> . Environmental Microbiology Reports, 2012, 4, 168-182.	2.4	81
60	Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis. PLoS ONE, 2012, 7, e51440.	2.5	2
61	A finely tuned regulatory circuit of the nicotinic acid degradation pathway in <i>Pseudomonas putida</i> . Environmental Microbiology, 2011, 13, 1718-1732.	3.8	22
62	Unravelling the gallic acid degradation pathway in bacteria: the <i>gal</i> cluster from <i>Pseudomonas putida</i> . Molecular Microbiology, 2011, 79, 359-374.	2.5	72
63	Controlled autolysis facilitates the polyhydroxyalkanoate recovery in <i>Pseudomonas putida</i> KT2440. Microbial Biotechnology, 2011, 4, 533-547.	4.2	75
64	Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology (United Kingdom), 2011, 157, 2670-2680.	1.8	31
65	Development of amperometric magnetogenosensors coupled to asymmetric PCR for the specific detection of Streptococcus pneumoniae. Analytical and Bioanalytical Chemistry, 2011, 399, 2413-2420.	3.7	30
66	Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Applied Microbiology and Biotechnology, 2011, 89, 1583-1598.	3.6	77
67	Inhibition of Recombinant D-Amino Acid Oxidase from <i>Trigonopsis variabilis</i> by Salts. Enzyme Research, 2011, 2011, 1-5.	1.8	0
68	Monitoring Escherichia coli growth in M63 media by ultrasonic noninvasive methods and correlation with spectrophotometric and HPLC techniques. Applied Microbiology and Biotechnology, 2010, 85, 813-821.	3.6	8
69	Disposable amperometric magnetoimmunosensors for the specific detection of Streptococcus pneumoniae. Biosensors and Bioelectronics, 2010, 26, 1225-1230.	10.1	40
70	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
71	Crystallization of the pneumococcal autolysin LytC: in-house phasing using novel lanthanide complexes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 448-451.	0.7	3
72	A preliminary crystallographic study of recombinant NicX, an Fe ²⁺ -dependent 2,5-dihydroxypyridine dioxygenase from <i>Pseudomonas putida</i> KT2440. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 549-553.	0.7	4

#	Article	IF	CITATIONS
73	Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC. Nature Structural and Molecular Biology, 2010, 17, 576-581.	8.2	57
74	The turnover of mediumâ€chainâ€length polyhydroxyalkanoates in <i>Pseudomonas putida</i> KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environmental Microbiology, 2010, 12, 207-221.	3.8	108
75	The PhaD regulator controls the simultaneous expression of the <i>pha</i> genes involved in polyhydroxyalkanoate metabolism and turnover in <i>Pseudomonas putida</i> KT2442. Environmental Microbiology, 2010, 12, 1591-1603.	3.8	59
76	ldentification of the <i>Geobacter metallireducens</i> BamVW Two-Component System, Involved in Transcriptional Regulation of Aromatic Degradation. Applied and Environmental Microbiology, 2010, 76, 383-385.	3.1	23
77	Biochemical Characterization of the Transcriptional Regulator BzdR from Azoarcus sp. CIB. Journal of Biological Chemistry, 2010, 285, 35694-35705.	3.4	33
78	3-Hydroxyphenylpropionate and Phenylpropionate Are Synergistic Activators of the MhpR Transcriptional Regulator from Escherichia coli. Journal of Biological Chemistry, 2009, 284, 21218-21228.	3.4	28
79	Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain. Applied and Environmental Microbiology, 2009, 75, 875-877.	3.1	34
80	Cloning, Expression, and Characterization of a Peculiar Choline-Binding β-Galactosidase from <i>Streptococcus mitis</i> . Applied and Environmental Microbiology, 2009, 75, 5972-5980.	3.1	10
81	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from <i>Streptococcus pneumoniae</i> . EMBO Reports, 2009, 10, 246-251.	4.5	56
82	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from Streptococcus pneumoniae. EMBO Reports, 2009, 10, 413-413.	4.5	2
83	Characterization of Ejl, the cell-wall amidase coded by the pneumococcal bacteriophage Ej-1. Protein Science, 2009, 11, 1788-1799.	7.6	18
84	Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View. Microbiology and Molecular Biology Reviews, 2009, 73, 71-133.	6.6	378
85	Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking. Biotechnology Progress, 2008, 20, 388-392.	2.6	44
86	Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate transcriptional regulator from Azoarcus sp. CIB. Environmental Microbiology, 2008, 10, 474-482.	3.8	20
87	Deciphering the genetic determinants for aerobic nicotinic acid degradation: The <i>nic</i> cluster from <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11329-11334.	7.1	136
88	The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon. Microbiology (United Kingdom), 2008, 154, 2151-2160.	1.8	7
89	Insights into the Structure-Function Relationships of Pneumococcal Cell Wall Lysozymes, LytC and Cpl-1. Journal of Biological Chemistry, 2008, 283, 28618-28628.	3.4	22
90	New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. Microbiology (United Kingdom), 2008, 154, 306-316.	1.8	15

Jose Luis Garcia

#	Article	IF	CITATIONS
91	Elucidation of the Molecular Recognition of Bacterial Cell Wall by Modular Pneumococcal Phage Endolysin CPL-1. Journal of Biological Chemistry, 2007, 282, 24990-24999.	3.4	61
92	Production of a Thermoresistant Alpha-galactosidase fromThermussp. Strain T2 for Food Processing. Food Biotechnology, 2007, 21, 91-103.	1.5	11
93	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
94	Newly Discovered Penicillin Acylase Activity of Aculeacin A Acylase from Actinoplanes utahensis. Applied and Environmental Microbiology, 2007, 73, 5378-5381.	3.1	20
95	Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology (United Kingdom), 2007, 153, 357-365.	1.8	55
96	Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Current Opinion in Microbiology, 2007, 10, 461-472.	5.1	238
97	The role of cofactor binding in tryptophan accessibility and conformational stability of His-tagged d-amino acid oxidase from Trigonopsis variabilis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 556-565.	2.3	13
98	New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Applied Microbiology and Biotechnology, 2006, 72, 88-93.	3.6	22
99	Coregulation by Phenylacetyl-Coenzyme A-Responsive PaaX Integrates Control of the Upper and Lower Pathways for Catabolism of Styrene by Pseudomonas sp. Strain Y2. Journal of Bacteriology, 2006, 188, 4812-4821.	2.2	29
100	Genetic Characterization of the Phenylacetyl-Coenzyme A Oxygenase from the Aerobic Phenylacetic Acid Degradation Pathway of Escherichia coli. Applied and Environmental Microbiology, 2006, 72, 7422-7426.	3.1	36
101	Oxygen-Dependent Regulation of the Central Pathway for the Anaerobic Catabolism of Aromatic Compounds in <i>Azoarcus</i> sp. Strain CIB. Journal of Bacteriology, 2006, 188, 2343-2354.	2.2	19
102	Unravelling the structure of the pneumococcal autolytic lysozyme. Biochemical Journal, 2005, 391, 41-49.	3.7	13
103	Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis. Protein Science, 2005, 14, 3013-3024.	7.6	10
104	Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Molecular Microbiology, 2005, 56, 144-154.	2.5	99
105	Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nature Structural and Molecular Biology, 2005, 12, 533-538.	8.2	89
106	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
107	Molecular Characterization of the Gallate Dioxygenase from Pseudomonas putida KT2440. Journal of Biological Chemistry, 2005, 280, 35382-35390.	3.4	53
108	BzdR, a Repressor That Controls the Anaerobic Catabolism of Benzoate in Azoarcus sp. CIB, Is the First Member of a New Subfamily of Transcriptional Regulators. Journal of Biological Chemistry, 2005, 280, 10683-10694.	3.4	77

#	Article	IF	CITATIONS
109	Allelic Variation of Polymorphic Locus lytB , Encoding a Choline-Binding Protein, from Streptococci of the Mitis Group. Applied and Environmental Microbiology, 2005, 71, 8706-8713.	3.1	14
110	Stabilization of Penicillin G Acylase from Escherichia coli : Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
111	Cloning of the Authentic Bovine Gene Encoding Pepsinogen A and Its Expression in Microbial Cells. Applied and Environmental Microbiology, 2004, 70, 2588-2595.	3.1	14
112	The PaaX Repressor, a Link between Penicillin G Acylase and the Phenylacetyl-Coenzyme A Catabolon of Escherichia coli W. Journal of Bacteriology, 2004, 186, 2215-2220.	2.2	24
113	The <i>bzd</i> Gene Cluster, Coding for Anaerobic Benzoate Catabolism, in <i>Azoarcus</i> sp. Strain CIB. Journal of Bacteriology, 2004, 186, 5762-5774.	2.2	111
114	Structural and Thermodynamic Characterization of Pal, a Phage Natural Chimeric Lysin Active against Pneumococci. Journal of Biological Chemistry, 2004, 279, 43697-43707.	3.4	35
115	Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources inEscherichia coli. FEMS Microbiology Reviews, 2004, 28, 503-518.	8.6	21
116	Selective and mild adsorption of large proteins on lowly activated immobilized metal ion affinity chromatography matrices. Journal of Chromatography A, 2004, 1055, 93-98.	3.7	24
117	In Vivo Immobilization of Fusion Proteins on Bioplastics by the Novel Tag BioF. Applied and Environmental Microbiology, 2004, 70, 3205-3212.	3.1	88
118	The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of I-Phenylalanine, I-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida. Journal of Bacteriology, 2004, 186, 5062-5077.	2.2	225
119	Construction of a Chimeric Thermostable Pyrophosphatase To Facilitate Its Purification and Immobilization by Using the Choline-Binding Tag. Applied and Environmental Microbiology, 2004, 70, 4642-4647.	3.1	10
120	Design of catabolic cassettes for styrene biodegradation. Antonie Van Leeuwenhoek, 2003, 84, 17-24.	1.7	15
121	Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure, 2003, 11, 1239-1249.	3.3	149
122	Molecular and biochemical analysis of the system regulating the lytic/lysogenic cycle in the pneumococcal temperate phage MM1. FEMS Microbiology Letters, 2003, 222, 193-197.	1.8	6
123	One-Step Purification, Covalent Immobilization, and Additional Stabilization of a Thermophilic Poly-His-Tagged β-Galactosidase fromThermussp. Strain T2 by using Novel Heterofunctional Chelateâ^'Epoxy Sepabeads. Biomacromolecules, 2003, 4, 107-113.	5.4	78
124	Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene, 2003, 319, 71-83.	2.2	28
125	Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Research, 2003, 31, 6598-6609.	14.5	62
126	Genome Organization and Molecular Analysis of the Temperate Bacteriophage MM1 of Streptococcus pneumoniae. Journal of Bacteriology, 2003, 185, 2362-2368.	2.2	45

#	Article	IF	CITATIONS
127	Overproduction of Thermus sp. Strain T2 β-Galactosidase in Escherichia coli and Preparation by Using Tailor-Made Metal Chelate Supports. Applied and Environmental Microbiology, 2003, 69, 1967-1972.	3.1	38
128	VO1, a Temperate Bacteriophage of the Type 19A Multiresistant Epidemic 8249 Strain ofStreptococcus pneumoniae: Analysis of Variability of Lytic and Putative C5 Methyltransferase Genes. Microbial Drug Resistance, 2003, 9, 7-15.	2.0	21
129	Regulation of the mhp Cluster Responsible for 3-(3-Hydroxyphenyl)propionic Acid Degradation in Escherichia coli. Journal of Biological Chemistry, 2003, 278, 27575-27585.	3.4	42
130	Molecular Peculiarities of the lytA Gene Isolated from Clinical Pneumococcal Strains That Are Bile Insoluble. Journal of Clinical Microbiology, 2002, 40, 2545-2554.	3.9	50
131	Purification and Polar Localization of Pneumococcal LytB, a Putative Endo-β- <i>N</i> -Acetylglucosaminidase: the Chain-Dispersing Murein Hydrolase. Journal of Bacteriology, 2002, 184, 4988-5000.	2.2	111
132	Conformational Selection of Glycomimetics at Enzyme Catalytic Sites:  Experimental Demonstration of the Binding of Distinct High-Energy Distorted Conformations of C-, S-, and O-Glycosides by E. Coli β-Galactosidases. Journal of the American Chemical Society, 2002, 124, 4804-4810.	13.7	85
133	Crystallization and preliminary X-ray diffraction studies of the complete modular endolysin from Cp-1, a phage infectingStreptococcus pneumoniae. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1487-1489.	2.5	2
134	Genomic analysis of the aromatic catabolic pathways from <i>Pseudomonas putida</i> KT2440. Environmental Microbiology, 2002, 4, 824-841.	3.8	448
135	Biotransformations Catalyzed by Multimeric Enzymes:Â Stabilization of Tetrameric Ampicillin Acylase Permits the Optimization of Ampicillin Synthesis under Dissociation Conditions. Biomacromolecules, 2001, 2, 95-104.	5.4	76
136	Microbial Synthesis of Poly(β-hydroxyalkanoates) Bearing Phenyl Groups fromPseudomonasputida:Â Chemical Structure and Characterization. Biomacromolecules, 2001, 2, 562-567.	5.4	45
137	Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environmental Microbiology, 2001, 3, 612-618.	3.8	79
138	The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Molecular Microbiology, 2001, 39, 1434-1442.	2.5	153
139	One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, 76, 269-276.	3.3	103
140	Affinity chromatography of polyhistidine tagged enzymes. Journal of Chromatography A, 2001, 915, 97-106.	3.7	75
141	Stabilization of a tetrameric enzyme (α-amino acid ester hydrolase from Acetobacter turbidans) enables a very improved performance of ampicillin synthesis. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 633-638.	1.8	18
142	A gene containment strategy based on a restriction-modification system. Environmental Microbiology, 2000, 2, 555-563.	3.8	26
143	Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environmental Microbiology, 2000, 2, 687-694.	3.8	82
144	NMR investigations of protein-carbohydrate interactions. FEBS Journal, 2000, 267, 3965-3978.	0.2	46

#	ARTICLE	IF	CITATIONS
145	Engineering the D-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme and Microbial Technology, 1999, 25, 88-95.	3.2	37
146	LytB, a novel pneumococcal murein hydrolase essential for cell separation. Molecular Microbiology, 1999, 31, 1275-1277.	2.5	139
147	The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Molecular Microbiology, 1999, 33, 128-138.	2.5	114
148	Functionalization of Gold Surfaces for Specific and Reversible Attachment of a Fused Î ² -Galactosidase and Choline-Receptor Protein. Journal of the American Chemical Society, 1997, 119, 1043-1051.	13.7	92
149	Structural Characterization of the Unligated and Choline-bound Forms of the Major Pneumococcal Autolysin LytA Amidase. Journal of Biological Chemistry, 1996, 271, 29152-29161.	3.4	36
150	Structural Organization of the Major Autolysin from Streptococcus pneumoniae. Journal of Biological Chemistry, 1996, 271, 6832-6838.	3.4	54
151	Stabilization of heterodimeric enzyme by multipoint covalent immobilization: Penicillin G acylase fromKluyvera citrophila. Biotechnology and Bioengineering, 1993, 42, 455-464.	3.3	73
152	Single–Step Purification on DEAE–Sephacel of Recombinant Polypeptides Produced in Escherichia Coli. Nature Biotechnology, 1992, 10, 795-798.	17.5	26
153	Role of Asp-9 and Glu-36 in the active site of the pneumococcal CPL1 lysozyme; an evolutionary perspective of lysozyme mechanism. Biochemistry, 1992, 31, 8495-8499.	2.5	20
154	Immobilization and single-step purification of fusion proteins using DEAE-cellulose. FEBS Journal, 1992, 203, 153-159.	0.2	86
155	Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli. FEMS Microbiology Letters, 1992, 95, 13-20.	1.8	4
156	Structural studies of the lysozyme coded by the pneumococcal phage Cp-1. Conformational changes induced by choline. FEBS Journal, 1990, 187, 409-416.	0.2	31
157	Purification and characterization of the autolytic glycosidase of streptococcuspneumoniae. Biochemical and Biophysical Research Communications, 1989, 158, 251-256.	2.1	36
158	Characterization of genetic transformation in Streptococcus oralis NCTC 11427: Expression of the pneumococcal amidase in S. oralis using a new shuttle vector. Molecular Genetics and Genomics, 1988, 215, 53-57.	2.4	44
159	Structural requirements of choline derivatives for â€~conversion' of pneumococcal amidase A new single-step procedure for purification of this autolysin. FEBS Letters, 1988, 232, 308-312.	2.8	87
160	A natural non-protein low molecular weight cAMP-dependent protein kinase inhibitor from the insect Ceratitis capitata. Insect Biochemistry, 1987, 17, 329-333.	1.8	0
161	Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. FEBS Journal, 1987, 164, 621-624.	0.2	92
162	The subunit I of the respiratory-chain NADH dehydrogenase from Cephalosporium acremonium: the evolution of a mitochondrial gene. Current Genetics, 1986, 10, 797-801.	1.7	8

#	Article	IF	CITATIONS
163	Isolation, characterization and physiological properties of an autolytic-deficient mutant of Streptococcus pneumoniae. Molecular Genetics and Genomics, 1986, 204, 237-242.	2.4	26
164	Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. FEBS Journal, 1986, 158, 289-293.	0.2	137
165	Cloning in Escherichia coli and molecular analysis of the sucrose system of the Salmonella plasmid SCR-53. Molecular Genetics and Genomics, 1985, 201, 575-577.	2.4	18