Jose Luis Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815941/publications.pdf

Version: 2024-02-01

30070 42399 9,863 165 54 92 citations g-index h-index papers 169 169 169 10744 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
2	Genomic analysis of the aromatic catabolic pathways from <i>Pseudomonas putida</i> KT2440. Environmental Microbiology, 2002, 4, 824-841.	3.8	448
3	Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View. Microbiology and Molecular Biology Reviews, 2009, 73, 71-133.	6.6	378
4	Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 2017, 10, 1017-1024.	4.2	272
5	Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Current Opinion in Microbiology, 2007, 10, 461-472.	5.1	238
6	The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida. Journal of Bacteriology, 2004, 186, 5062-5077.	2.2	225
7	Genome sequence of the olive tree, Olea europaea. GigaScience, 2016, 5, 29.	6.4	201
8	Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology, 2016, 17, 32.	8.8	166
9	The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Molecular Microbiology, 2001, 39, 1434-1442.	2.5	153
10	Whole genome sequencing of turbot (<i>Scophthalmus maximus</i> ; Pleuronectiformes): a fish adapted to demersal life. DNA Research, 2016, 23, 181-192.	3.4	150
11	Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure, 2003, 11, 1239-1249.	3.3	149
12	LytB, a novel pneumococcal murein hydrolase essential for cell separation. Molecular Microbiology, 1999, 31, 1275-1277.	2.5	139
13	Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 2012, 5, 679-699.	4.2	139
14	Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. FEBS Journal, 1986, 158, 289-293.	0.2	137
15	Deciphering the genetic determinants for aerobic nicotinic acid degradation: The <i>nic</i> cluster from <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11329-11334.	7.1	136
16	Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biology, 2016, 17, 251.	8.8	131
17	New Insights on Steroid Biotechnology. Frontiers in Microbiology, 2018, 9, 958.	3. 5	124
18	The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Molecular Microbiology, 1999, 33, 128-138.	2.5	114

#	Article	IF	CITATIONS
19	Purification and Polar Localization of Pneumococcal LytB, a Putative Endo-β- <i>N</i> -Acetylglucosaminidase: the Chain-Dispersing Murein Hydrolase. Journal of Bacteriology, 2002, 184, 4988-5000.	2.2	111
20	Stabilization of Penicillin G Acylase from Escherichia coli: Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
21	The <i>bzd</i> Gene Cluster, Coding for Anaerobic Benzoate Catabolism, in <i>Azoarcus</i> sp. Strain CIB. Journal of Bacteriology, 2004, 186, 5762-5774.	2.2	111
22	The turnover of mediumâ€chainâ€length polyhydroxyalkanoates in <i>Pseudomonas putida</i> KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environmental Microbiology, 2010, 12, 207-221.	3.8	108
23	One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, 76, 269-276.	3.3	103
24	Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Molecular Microbiology, 2005, 56, 144-154.	2.5	99
25	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
26	Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. FEBS Journal, 1987, 164, 621-624.	0.2	92
27	Functionalization of Gold Surfaces for Specific and Reversible Attachment of a Fused \hat{l}^2 -Galactosidase and Choline-Receptor Protein. Journal of the American Chemical Society, 1997, 119, 1043-1051.	13.7	92
28	Bacterial Degradation of Benzoate. Journal of Biological Chemistry, 2012, 287, 10494-10508.	3.4	91
29	Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nature Structural and Molecular Biology, 2005, 12, 533-538.	8.2	89
30	In Vivo Immobilization of Fusion Proteins on Bioplastics by the Novel Tag BioF. Applied and Environmental Microbiology, 2004, 70, 3205-3212.	3.1	88
31	Structural requirements of choline derivatives for †conversion†of pneumococcal amidase A new single-step procedure for purification of this autolysin. FEBS Letters, 1988, 232, 308-312.	2.8	87
32	Immobilization and single-step purification of fusion proteins using DEAE-cellulose. FEBS Journal, 1992, 203, 153-159.	0.2	86
33	Conformational Selection of Glycomimetics at Enzyme Catalytic Sites:  Experimental Demonstration of the Binding of Distinct High-Energy Distorted Conformations of C-, S-, and O-Glycosides by E. Coli β-Galactosidases. Journal of the American Chemical Society, 2002, 124, 4804-4810.	13.7	85
34	Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metabolic Engineering, 2016, 35, 46-54.	7.0	85
35	Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environmental Microbiology, 2000, 2, 687-694.	3.8	82
36	Cholesterol metabolism in <i>Mycobacterium smegmatis</i> . Environmental Microbiology Reports, 2012, 4, 168-182.	2.4	81

#	Article	IF	CITATIONS
37	Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environmental Microbiology, 2001, 3, 612-618.	3.8	79
38	One-Step Purification, Covalent Immobilization, and Additional Stabilization of a Thermophilic Poly-His-Tagged Î ² -Galactosidase fromThermussp. Strain T2 by using Novel Heterofunctional Chelateâ ² Epoxy Sepabeads. Biomacromolecules, 2003, 4, 107-113.	5.4	78
39	BzdR, a Repressor That Controls the Anaerobic Catabolism of Benzoate in Azoarcus sp. CIB, Is the First Member of a New Subfamily of Transcriptional Regulators. Journal of Biological Chemistry, 2005, 280, 10683-10694.	3.4	77
40	Disruption of \hat{l}^2 -oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Applied Microbiology and Biotechnology, 2011, 89, 1583-1598.	3.6	77
41	Biotransformations Catalyzed by Multimeric Enzymes:Â Stabilization of Tetrameric Ampicillin Acylase Permits the Optimization of Ampicillin Synthesis under Dissociation Conditions. Biomacromolecules, 2001, 2, 95-104.	5.4	76
42	Affinity chromatography of polyhistidine tagged enzymes. Journal of Chromatography A, 2001, 915, 97-106.	3.7	75
43	Controlled autolysis facilitates the polyhydroxyalkanoate recovery in <i>Pseudomonas putida</i> KT2440. Microbial Biotechnology, 2011, 4, 533-547.	4.2	75
44	Stabilization of heterodimeric enzyme by multipoint covalent immobilization: Penicillin G acylase fromKluyvera citrophila. Biotechnology and Bioengineering, 1993, 42, 455-464.	3.3	73
45	Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Systematic and Applied Microbiology, 2015, 38, 462-471.	2.8	73
46	Unravelling the gallic acid degradation pathway in bacteria: the <i>gal</i> cluster from <i>Pseudomonas putida</i> Molecular Microbiology, 2011, 79, 359-374.	2.5	72
47	PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 2014, 35, 14-24.	11.4	63
48	Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Research, 2003, 31, 6598-6609.	14.5	62
49	Identification and Biochemical Evidence of a Medium-Chain-Length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus Predatory Hydrolytic Arsenal. Applied and Environmental Microbiology, 2012, 78, 6017-6026.	3.1	62
50	Elucidation of the Molecular Recognition of Bacterial Cell Wall by Modular Pneumococcal Phage Endolysin CPL-1. Journal of Biological Chemistry, 2007, 282, 24990-24999.	3.4	61
51	The PhaD regulator controls the simultaneous expression of the <i>pha</i> genes involved in polyhydroxyalkanoate metabolism and turnover in <i>Pseudomonas putida</i> KT2442. Environmental Microbiology, 2010, 12, 1591-1603.	3.8	59
52	Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC. Nature Structural and Molecular Biology, 2010, 17, 576-581.	8.2	57
53	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from <i>Streptococcus pneumoniae</i> EMBO Reports, 2009, 10, 246-251.	4.5	56
54	Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology (United Kingdom), 2007, 153, 357-365.	1.8	55

#	Article	IF	Citations
55	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
56	Structural Organization of the Major Autolysin from Streptococcus pneumoniae. Journal of Biological Chemistry, 1996, 271, 6832-6838.	3.4	54
57	A highly conserved mycobacterial cholesterol catabolic pathway. Environmental Microbiology, 2013, 15, 2342-2359.	3.8	54
58	Molecular Characterization of the Gallate Dioxygenase from Pseudomonas putida KT2440. Journal of Biological Chemistry, 2005, 280, 35382-35390.	3.4	53
59	New challenges for syngas fermentation: towards production of biopolymers. Journal of Chemical Technology and Biotechnology, 2015, 90, 1735-1751.	3.2	53
60	Molecular Peculiarities of the lytA Gene Isolated from Clinical Pneumococcal Strains That Are Bile Insoluble. Journal of Clinical Microbiology, 2002, 40, 2545-2554.	3.9	50
61	<i>Mycobacterium smegmatis</i> is a suitable cell factory for the production of steroidic synthons. Microbial Biotechnology, 2017, 10, 138-150.	4.2	49
62	NMR investigations of protein-carbohydrate interactions. FEBS Journal, 2000, 267, 3965-3978.	0.2	46
63	Microbial Synthesis of Poly(\hat{l}^2 -hydroxyalkanoates) Bearing Phenyl Groups fromPseudomonasputida: \hat{A} Chemical Structure and Characterization. Biomacromolecules, 2001, 2, 562-567.	5.4	45
64	Genome Organization and Molecular Analysis of the Temperate Bacteriophage MM1 of Streptococcus pneumoniae. Journal of Bacteriology, 2003, 185, 2362-2368.	2.2	45
65	Characterization of genetic transformation in Streptococcus oralis NCTC 11427: Expression of the pneumococcal amidase in S. oralis using a new shuttle vector. Molecular Genetics and Genomics, 1988, 215, 53-57.	2.4	44
66	Stabilization of a Multimeric \hat{l}^2 -Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking. Biotechnology Progress, 2008, 20, 388-392.	2.6	44
67	Engineering <i>Mycobacterium smegmatis</i> for testosterone production. Microbial Biotechnology, 2017, 10, 151-161.	4.2	43
68	Regulation of the mhp Cluster Responsible for 3-(3-Hydroxyphenyl)propionic Acid Degradation in Escherichia coli. Journal of Biological Chemistry, 2003, 278, 27575-27585.	3.4	42
69	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
70	Disposable amperometric magnetoimmunosensors for the specific detection of Streptococcus pneumoniae. Biosensors and Bioelectronics, 2010, 26, 1225-1230.	10.1	40
71	Overproduction of Thermus sp. Strain T2 \hat{I}^2 -Galactosidase in Escherichia coli and Preparation by Using Tailor-Made Metal Chelate Supports. Applied and Environmental Microbiology, 2003, 69, 1967-1972.	3.1	38
72	Engineering the D-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme and Microbial Technology, 1999, 25, 88-95.	3.2	37

#	Article	IF	Citations
73	FLYCOP: metabolic modeling-based analysis and engineering microbial communities. Bioinformatics, 2018, 34, i954-i963.	4.1	37
74	Purification and characterization of the autolytic glycosidase of streptococcuspneumoniae. Biochemical and Biophysical Research Communications, 1989, 158, 251-256.	2.1	36
75	Structural Characterization of the Unligated and Choline-bound Forms of the Major Pneumococcal Autolysin LytA Amidase. Journal of Biological Chemistry, 1996, 271, 29152-29161.	3.4	36
76	Genetic Characterization of the Phenylacetyl-Coenzyme A Oxygenase from the Aerobic Phenylacetic Acid Degradation Pathway of Escherichia coli. Applied and Environmental Microbiology, 2006, 72, 7422-7426.	3.1	36
77	Structural and Thermodynamic Characterization of Pal, a Phage Natural Chimeric Lysin Active against Pneumococci. Journal of Biological Chemistry, 2004, 279, 43697-43707.	3.4	35
78	Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain. Applied and Environmental Microbiology, 2009, 75, 875-877.	3.1	34
79	Biochemical Characterization of the Transcriptional Regulator BzdR from Azoarcus sp. CIB. Journal of Biological Chemistry, 2010, 285, 35694-35705.	3.4	33
80	Deciphering the Transcriptional Regulation of Cholesterol Catabolic Pathway in Mycobacteria. Journal of Biological Chemistry, 2014, 289, 17576-17588.	3.4	32
81	Structural studies of the lysozyme coded by the pneumococcal phage Cp-1. Conformational changes induced by choline. FEBS Journal, 1990, 187, 409-416.	0.2	31
82	Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology (United Kingdom), 2011, 157, 2670-2680.	1.8	31
83	Genome Sequence of the Methanotrophic Poly-β-Hydroxybutyrate Producer Methylocystis parvus OBBP. Journal of Bacteriology, 2012, 194, 5709-5710.	2.2	31
84	Development of amperometric magnetogenosensors coupled to asymmetric PCR for the specific detection of Streptococcus pneumoniae. Analytical and Bioanalytical Chemistry, 2011, 399, 2413-2420.	3.7	30
85	Testosterone Degradative Pathway of Novosphingobium tardaugens. Genes, 2019, 10, 871.	2.4	30
86	Coregulation by Phenylacetyl-Coenzyme A-Responsive PaaX Integrates Control of the Upper and Lower Pathways for Catabolism of Styrene by Pseudomonas sp. Strain Y2. Journal of Bacteriology, 2006, 188, 4812-4821.	2.2	29
87	Reward for <i><scp>B</scp>dellovibrio bacteriovorus</i> for preying on a polyhydroxyalkanoate producer. Environmental Microbiology, 2013, 15, 1204-1215.	3.8	29
88	Unraveling the $17\hat{l}^2$ -Estradiol Degradation Pathway in Novosphingobium tardaugens NBRC 16725. Frontiers in Microbiology, 2020, 11, 588300.	3.5	29
89	Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene, 2003, 319, 71-83.	2.2	28
90	3-Hydroxyphenylpropionate and Phenylpropionate Are Synergistic Activators of the MhpR Transcriptional Regulator from Escherichia coli. Journal of Biological Chemistry, 2009, 284, 21218-21228.	3.4	28

#	Article	lF	Citations
91	Insights on the regulation of the phenylacetate degradation pathway from <pre><scp><i>E</i></scp><i>scp><i>E</i></i></pre> <pre>Compare the regulation of the phenylacetate degradation pathway from the regulation of the regulation</pre>	2.4	27
92	Isolation, characterization and physiological properties of an autolytic-deficient mutant of Streptococcus pneumoniae. Molecular Genetics and Genomics, 1986, 204, 237-242.	2.4	26
93	Single–Step Purification on DEAE–Sephacel of Recombinant Polypeptides Produced in Escherichia Coli. Nature Biotechnology, 1992, 10, 795-798.	17.5	26
94	A gene containment strategy based on a restriction-modification system. Environmental Microbiology, 2000, 2, 555-563.	3.8	26
95	The PaaX Repressor, a Link between Penicillin G Acylase and the Phenylacetyl-Coenzyme A Catabolon of Escherichia coli W. Journal of Bacteriology, 2004, 186, 2215-2220.	2.2	24
96	Selective and mild adsorption of large proteins on lowly activated immobilized metal ion affinity chromatography matrices. Journal of Chromatography A, 2004, 1055, 93-98.	3.7	24
97	Identification of the <i>Geobacter metallireducens </i> BamVW Two-Component System, Involved in Transcriptional Regulation of Aromatic Degradation. Applied and Environmental Microbiology, 2010, 76, 383-385.	3.1	23
98	Molecular characterization of a new gene cluster for steroid degradation in <i>Mycobacterium smegmatis</i> . Environmental Microbiology, 2017, 19, 2546-2563.	3.8	23
99	New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Applied Microbiology and Biotechnology, 2006, 72, 88-93.	3.6	22
100	Insights into the Structure-Function Relationships of Pneumococcal Cell Wall Lysozymes, LytC and Cpl-1. Journal of Biological Chemistry, 2008, 283, 28618-28628.	3.4	22
101	A finely tuned regulatory circuit of the nicotinic acid degradation pathway in <i>Pseudomonas putida</i> . Environmental Microbiology, 2011, 13, 1718-1732.	3.8	22
102	VO1, a Temperate Bacteriophage of the Type 19A Multiresistant Epidemic 8249 Strain of Streptococcus pneumoniae: Analysis of Variability of Lytic and Putative C5 Methyltransferase Genes. Microbial Drug Resistance, 2003, 9, 7-15.	2.0	21
103	Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli. FEMS Microbiology Reviews, 2004, 28, 503-518.	8.6	21
104	Engineering alternative isobutanol production platforms. AMB Express, 2015, 5, 119.	3.0	21
105	Molecular and functional analysis of the <i>mce4</i> operon in <i>Mycobacterium smegmatis</i> Environmental Microbiology, 2017, 19, 3689-3699.	3.8	21
106	Role of Asp-9 and Glu-36 in the active site of the pneumococcal CPL1 lysozyme; an evolutionary perspective of lysozyme mechanism. Biochemistry, 1992, 31, 8495-8499.	2.5	20
107	Newly Discovered Penicillin Acylase Activity of Aculeacin A Acylase from Actinoplanes utahensis. Applied and Environmental Microbiology, 2007, 73, 5378-5381.	3.1	20
108	Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate transcriptional regulator from Azoarcus sp. CIB. Environmental Microbiology, 2008, 10, 474-482.	3.8	20

#	Article	IF	CITATIONS
109	Unravelling the pleiotropic role of the <scp>M</scp> ce <scp>G</scp> <scp>ATP</scp> ase in <scp><i>M</i></scp> <ii>ycobacterium smegmatis<i>Environmental Microbiology, 2017, 19, 2564-2576.</i></ii>	3.8	20
110	Oxygen-Dependent Regulation of the Central Pathway for the Anaerobic Catabolism of Aromatic Compounds in <i>Azoarcus </i> sp. Strain CIB. Journal of Bacteriology, 2006, 188, 2343-2354.	2.2	19
111	Cloning in Escherichia coli and molecular analysis of the sucrose system of the Salmonella plasmid SCR-53. Molecular Genetics and Genomics, 1985, 201, 575-577.	2.4	18
112	Stabilization of a tetrameric enzyme (α-amino acid ester hydrolase from Acetobacter turbidans) enables a very improved performance of ampicillin synthesis. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 633-638.	1.8	18
113	Characterization of Ejl, the cell-wall amidase coded by the pneumococcal bacteriophage Ej-1. Protein Science, 2009, 11, 1788-1799.	7.6	18
114	Genome of Labrenzia sp. PHM005 Reveals a Complete and Active Trans-AT PKS Gene Cluster for the Biosynthesis of Labrenzin. Frontiers in Microbiology, 2019, 10, 2561.	3. 5	18
115	Clinical evaluation of a disposable amperometric magneto-genosensor for the detection and identification of Streptococcus pneumoniae. Journal of Microbiological Methods, 2014, 103, 25-28.	1.6	17
116	Overexpression of Penicillin V Acylase from Streptomyces lavendulae and Elucidation of Its Catalytic Residues. Applied and Environmental Microbiology, 2015, 81, 1225-1233.	3.1	17
117	1,3-Propanediol production by Klebsiella oxytoca NRRL-B199 from glycerol. Medium composition and operational conditions. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 100-107.	4.4	17
118	Pipelines for New Chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. Environmental Microbiology, 2014, 16, 9-18.	3.8	16
119	Design of catabolic cassettes for styrene biodegradation. Antonie Van Leeuwenhoek, 2003, 84, 17-24.	1.7	15
120	New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. Microbiology (United Kingdom), 2008, 154, 306-316.	1.8	15
121	Identification and expression of the 11βâ€steroid hydroxylase fromCochliobolus lunatusinCorynebacterium glutamicum. Microbial Biotechnology, 2019, 12, 856-868.	4.2	15
122	Cloning of the Authentic Bovine Gene Encoding Pepsinogen A and Its Expression in Microbial Cells. Applied and Environmental Microbiology, 2004, 70, 2588-2595.	3.1	14
123	Allelic Variation of Polymorphic Locus lytB , Encoding a Choline-Binding Protein, from Streptococci of the Mitis Group. Applied and Environmental Microbiology, 2005, 71, 8706-8713.	3.1	14
124	Unravelling the structure of the pneumococcal autolytic lysozyme. Biochemical Journal, 2005, 391, 41-49.	3.7	13
125	The role of cofactor binding in tryptophan accessibility and conformational stability of His-tagged d-amino acid oxidase from Trigonopsis variabilis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 556-565.	2.3	13
126	Identification of a Missing Link in the Evolution of an Enzyme into a Transcriptional Regulator. PLoS ONE, 2013, 8, e57518.	2.5	13

#	Article	IF	CITATIONS
127	Quantifying dynamic mechanisms of auto-regulation in Escherichia coli with synthetic promoter in response to varying external phosphate levels. Scientific Reports, 2019, 9, 2076.	3.3	12
128	Production of 11αâ€hydroxysteroids from sterols in a single fermentation step by <i>Mycolicibacterium smegmatis</i> . Microbial Biotechnology, 2021, 14, 2514-2524.	4.2	12
129	Production of a Thermoresistant Alpha-galactosidase fromThermussp. Strain T2 for Food Processing. Food Biotechnology, 2007, 21, 91-103.	1.5	11
130	Unravelling a new catabolic pathway of Câ€19 steroids in <i>Mycobacterium smegmatis</i> Environmental Microbiology, 2018, 20, 1815-1827.	3.8	11
131	Heterologous production and biochemical characterization of a new highly glucose tolerant GH1 \hat{l}^2 -glucosidase from Anoxybacillus thermarum. Process Biochemistry, 2020, 99, 1-8.	3.7	11
132	Construction of a Chimeric Thermostable Pyrophosphatase To Facilitate Its Purification and Immobilization by Using the Choline-Binding Tag. Applied and Environmental Microbiology, 2004, 70, 4642-4647.	3.1	10
133	Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis. Protein Science, 2005, 14, 3013-3024.	7.6	10
134	Cloning, Expression, and Characterization of a Peculiar Choline-Binding \hat{l}^2 -Galactosidase from <i>Streptococcus mitis</i> . Applied and Environmental Microbiology, 2009, 75, 5972-5980.	3.1	10
135	Plasmids as Tools for Containment. Microbiology Spectrum, 2014, 2, .	3.0	10
136	Characterization of the $\langle scp \rangle K \langle scp \rangle R \langle scp \rangle R \langle scp \rangle 2$ regulator responsible of the lower cholesterol degradative pathway in $\langle scp \rangle \langle scp \rangle R \langle scp \rangle R \langle scp \rangle R$. Environmental Microbiology Reports, 2015, 7, 155-163.	2.4	10
137	Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules, 2017, 22, 2164.	3.8	10
138	Production of 4-Ene-3-ketosteroids in Corynebacterium glutamicum. Catalysts, 2017, 7, 316.	3.5	9
139	One-Step Immobilization and Stabilization of a Recombinant Enterococcus faecium DBFIQ E36 l-Arabinose Isomerase for d-Tagatose Synthesis. Applied Biochemistry and Biotechnology, 2019, 188, 310-325.	2.9	9
140	Identification of <scp><i>trans</i>ê€AT</scp> polyketide clusters in two marine bacteria reveals cryptic similarities between distinct symbiosis factors. Environmental Microbiology, 2021, 23, 2509-2521.	3.8	9
141	The subunit I of the respiratory-chain NADH dehydrogenase from Cephalosporium acremonium: the evolution of a mitochondrial gene. Current Genetics, 1986, 10, 797-801.	1.7	8
142	Monitoring Escherichia coli growth in M63 media by ultrasonic noninvasive methods and correlation with spectrophotometric and HPLC techniques. Applied Microbiology and Biotechnology, 2010, 85, 813-821.	3.6	8
143	Genome Sequence of Pseudomonas azelaica Strain Aramco J. Genome Announcements, 2015, 3, .	0.8	8
144	The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon. Microbiology (United Kingdom), 2008, 154, 2151-2160.	1.8	7

#	Article	IF	Citations
145	Engineering the Steroid Hydroxylating System from Cochliobolus lunatus in Mycolicibacterium smegmatis. Microorganisms, 2021, 9, 1499.	3.6	7
146	Molecular and biochemical analysis of the system regulating the lytic/lysogenic cycle in the pneumococcal temperate phage MM1. FEMS Microbiology Letters, 2003, 222, 193-197.	1.8	6
147	Genome of the Psychrophilic Bacterium Bacillus psychrosaccharolyticus, a Potential Source of 2′-Deoxyribosyltransferase for Industrial Nucleoside Synthesis. Genome Announcements, 2013, 1, .	0.8	6
148	Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Microbial Biotechnology, 2017, 10, 1418-1425.	4.2	6
149	Effect of <i> Arthrospira < /i > supplementation on <i> Oreochromis niloticus < /i > gut microbiota and flesh quality. Aquaculture Research, 2019, 50, 1448-1458.</i></i>	1.8	6
150	Bacterial Metabolism of Steroids. , 2017, , 1-22.		5
151	A preliminary crystallographic study of recombinant NicX, an Fe ²⁺ -dependent 2,5-dihydroxypyridine dioxygenase from <i>Pseudomonas putida</i> KT2440. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 549-553.	0.7	4
152	Draft Genome Sequence of Actinoplanes utahensis NRRL 12052, a Microorganism Involved in Industrial Production of Pharmaceutical Intermediates. Genome Announcements, 2015, 3, .	0.8	4
153	Bacterial Metabolism of Steroids. , 2019, , 315-336.		4
154	Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli. FEMS Microbiology Letters, 1992, 95, 13-20.	1.8	4
155	Crystallization of the pneumococcal autolysin LytC: in-house phasing using novel lanthanide complexes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 448-451.	0.7	3
156	Effect of spirulina (Arthrospira platensis) supplementation on tilapia (Oreochromis niloticus) growth and stress responsiveness under hypoxia. Spanish Journal of Agricultural Research, 2018, 16, e0606.	0.6	3
157	Identification of the EdcR Estrogen-Dependent Repressor in Caenibius tardaugens NBRC 16725: Construction of a Cellular Estradiol Biosensor. Genes, 2021, 12, 1846.	2.4	3
158	In vivo production of pederin by labrenzin pathway expansion. Metabolic Engineering Communications, 2022, 14, e00198.	3.6	3
159	Crystallization and preliminary X-ray diffraction studies of the complete modular endolysin from Cp-1, a phage infectingStreptococcus pneumoniae. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1487-1489.	2.5	2
160	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from Streptococcus pneumoniae. EMBO Reports, 2009, 10, 413-413.	4.5	2
161	Degradation of Aromatic Compounds in Pseudomonas: A Systems Biology View. , 2019, , 639-687.		2
162	Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis. PLoS ONE, 2012, 7, e51440.	2.5	2

#	Article	IF	CITATIONS
163	Complete mitochondrial genome ofPolymastia littoralis(Demospongiae, Polymastiidae). Mitochondrial DNA, 2016, 27, 312-313.	0.6	1
164	A natural non-protein low molecular weight cAMP-dependent protein kinase inhibitor from the insect Ceratitis capitata. Insect Biochemistry, 1987, 17, 329-333.	1.8	0
165	Inhibition of Recombinant D-Amino Acid Oxidase from <i>Trigonopsis variabilis</i> by Salts. Enzyme Research, 2011, 2011, 1-5.	1.8	O