
Lillian K Fritz-Laylin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346, 1257998.	12.6	1,567
3	Genomic Analysis of Organismal Complexity in the Multicellular Green Alga <i>Volvox carteri</i> . Science, 2010, 329, 223-226.	12.6	536
4	SuperPlots: Communicating reproducibility and variability in cell biology. Journal of Cell Biology, 2020, 219, .	5.2	418
5	The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell, 2010, 140, 631-642.	28.9	399
6	Phylogenomic Analysis of the Receptor-Like Proteins of Rice and Arabidopsis. Plant Physiology, 2005, 138, 611-623.	4.8	211
7	Functional Analysis of Avr9/Cf-9 Rapidly Elicited Genes Identifies a Protein Kinase, ACIK1, That Is Essential for Full Cf-9–Dependent Disease Resistance in Tomato. Plant Cell, 2005, 17, 295-310.	6.6	164
8	Non-model model organisms. BMC Biology, 2017, 15, 55.	3.8	164
9	Kinesin-13 Regulates Flagellar, Interphase, and Mitotic Microtubule Dynamics in <i>Giardia intestinalis</i> . Eukaryotic Cell, 2007, 6, 2354-2364.	3.4	139
10	Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes. ELife, 2017, 6, .	6.0	107
11	WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. Journal of Cell Biology, 2017, 216, 1673-1688.	5.2	91
12	Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature, 2015, 518, 98-101.	27.8	82
13	Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes. Protist, 2010, 161, 642-671.	1.5	55
14	The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Research in Microbiology, 2011, 162, 607-618.	2.1	40
15	Plant-type mitochondrial RNA editing in the protist <i>Naegleria gruberi</i> : FIGURE 1 Rna, 2011, 17, 2058-2062.	3.5	36
16	Ancestral centriole and flagella proteins identified by analysis of <i>Naegleria</i> differentiation. Journal of Cell Science, 2010, 123, 4024-4031.	2.0	29
17	The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom. Current Biology, 2021, 31, 1192-1205.e6.	3.9	29
18	Genetic transformation of Spizellomyces punctatus, a resource for studying chytrid biology and evolutionary cell biology. ELife, 2020, 9, .	6.0	29

LILLIAN K FRITZ-LAYLIN

#	Article	IF	CITATIONS
19	Naegleria gruberi <i>De Novo</i> Basal Body Assembly Occurs via Stepwise Incorporation of Conserved Proteins. Eukaryotic Cell, 2010, 9, 860-865.	3.4	27
20	Diversity and evolution of actin-dependent phenotypes. Current Opinion in Genetics and Development, 2019, 58-59, 40-48.	3.3	27
21	Conserved actin machinery drives microtubule-independent motility and phagocytosis in <i>Naegleria</i> . Journal of Cell Biology, 2020, 219, .	5.2	25
22	The evolution of animal cell motility. Current Biology, 2020, 30, R477-R482.	3.9	21
23	Rapid centriole assembly in <scp><i>N</i></scp> <i>aegleria</i> reveals conserved roles for both de novo and mentored assembly. Cytoskeleton, 2016, 73, 109-116.	2.0	19
24	Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 2021, 19, 142.	3.8	18
25	Isolation and maintenance of Batrachochytrium salamandrivorans cultures. Diseases of Aquatic Organisms, 2020, 140, 1-11.	1.0	15
26	Naegleria's mitotic spindles are built from unique tubulins and highlight core spindle features. Current Biology, 2022, 32, 1247-1261.e6.	3.9	14
27	Naegleria: a classic model for de novo basal body assembly. Cilia, 2016, 5, 10.	1.8	13
28	Concise Language Promotes Clear Thinking about Cell Shape and Locomotion. BioEssays, 2018, 40, e1700225.	2.5	13
29	Our evolving view of cell motility. Cell Cycle, 2017, 16, 1735-1736.	2.6	12
30	High-efficiency electroporation of chytrid fungi. Scientific Reports, 2020, 10, 15145.	3.3	12
31	Relative Quantitation of Polymerized Actin in Suspension Cells by Flow Cytometry. Bio-protocol, 2018, 8, .	0.4	7
32	Laboratory Maintenance of the Chytrid Fungus <i>Batrachochytrium dendrobatidis</i> . Current Protocols, 2021, 1, e309.	2.9	7
33	Amphibian mucus triggers a developmental transition in the frog-killing chytrid fungus. Current Biology, 2022, 32, 2765-2771.e4.	3.9	6
34	"The Missing Link― The Tubulin Mutation Database Connects Over 1500 Missense Mutations With Phenotypes Across Eukaryotes. Cytoskeleton, 2019, 76, 175-176.	2.0	5
35	A OneStep Solution to Fix and Stain Cells for Correlative Live and Fixed Microscopy. Current Protocols, 2021, 1, e308.	2.9	4
36	ldentification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. PLoS ONE, 2020, 15, e0240480.	2.5	3

#	Article	IF	CITATIONS
37	Evolutionary cell biology: Closest unicellular relatives of animals crawl when squeezed. Current Biology, 2021, 31, R353-R355.	3.9	2
38	Title is missing!. , 2020, 15, e0240480.		0
39	Title is missing!. , 2020, 15, e0240480.		0
40	Title is missing!. , 2020, 15, e0240480.		0
41	Title is missing!. , 2020, 15, e0240480.		0