Rachel J Stephenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681555/publications.pdf

Version: 2024-02-01

31 659 11 papers citations h-index

32 32 1011 all docs docs citations times ranked citing authors

25

g-index

#	Article	IF	Citations
1	Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Advanced Drug Delivery Reviews, 2017, 110-111, 169-187.	13.7	281
2	An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry - A European Journal, 2017, 23, 4233-4254.	3.3	43
3	Advances in Infectious Disease Vaccine Adjuvants. Vaccines, 2022, 10, 1120.	4.4	32
4	Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials, 2022, 280, 121303.	11.4	30
5	Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies. Frontiers in Genetics, 2014, 5, 176.	2.3	27
6	Schistosome Vaccine Adjuvants in Preclinical and Clinical Research. Vaccines, 2014, 2, 654-685.	4.4	26
7	Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A <i>Streptococcus</i> . ACS Infectious Diseases, 2020, 6, 2502-2512.	3.8	21
8	Immunology of carbohydrate-based vaccines. Advanced Drug Delivery Reviews, 2020, 165-166, 117-126.	13.7	21
9	Targeting the Mannose Receptor with Mannosylated Subunit Vaccines. Current Medicinal Chemistry, 2014, 21, 3405-3418.	2.4	21
10	Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine, 2022, Volume 17, 869-900.	6.7	17
11	Synthesis of Mannosylated Lipopeptides with Receptor Targeting Properties. Bioconjugate Chemistry, 2016, 27, 533-548.	3.6	12
12	Systematic evaluation of self-adjuvanting lipopeptide nano-vaccine platforms for the induction of potent CD8+T-cell responses. Nanomedicine, 2016, 11, 137-152.	3.3	12
13	Structure–Activity Analysis of Cyclic Multicomponent Lipopeptide Self-Adjuvanting Vaccine Candidates Presenting Group A <i>Streptococcus</i> Antigens. Journal of Medicinal Chemistry, 2020, 63, 5387-5397.	6.4	11
14	Synthesis of bifunctional peptide derivatives based on a \hat{l}^2 -cyclodextrin core with drug delivery potential. Tetrahedron Letters, 2010, 51, 800-803.	1.4	10
15	Synthesis and Characterisation of Selfâ€Assembled and Selfâ€Adjuvanting Asymmetric Multiâ€Epitope Lipopeptides of Ovalbumin. Chemistry - A European Journal, 2015, 21, 1251-1261.	3.3	10
16	Multiplex Serology for Common Viral Infections in Feral Pigs (<i>Sus scrofa</i>) in Hawaii between 2007 and 2010. Journal of Wildlife Diseases, 2015, 51, 239-243.	0.8	9
17	Influence of Physicochemical Properties of Lipopeptide Adjuvants on the Immune Response: A Rationale for Engineering a Potent Vaccine. Chemistry - A European Journal, 2018, 24, 9892-9902.	3.3	9
18	Opsonic Activity of Conservative Versus Variable Regions of the Group A Streptococcus M Protein. Vaccines, 2020, 8, 210.	4.4	9

#	Article	lF	CITATIONS
19	Immunogenicity Assessment of Cell Wall Carbohydrates of Group A <i>Streptococcus</i> via Self-Adjuvanted Glyco-lipopeptides. ACS Infectious Diseases, 2021, 7, 390-405.	3.8	9
20	Polyethylenimine quantity and molecular weight influence its adjuvanting properties in liposomal peptide vaccines. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127920.	2.2	9
21	Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors. PLoS ONE, 2016, 11, e0159704.	2.5	9
22	Effect of lipidated gonadotropin-releasing hormone peptides on receptor mediated binding and uptake into prostate cancer cells in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1799-1808.	3.3	7
23	Application of Fmoc-SPPS, Thiol-Maleimide Conjugation, and Copper(I)-Catalyzed Alkyne-Azide Cycloaddition "Click―Reaction in the Synthesis of a Complex Peptide-Based Vaccine Candidate Against Group A Streptococcus. Methods in Molecular Biology, 2020, 2103, 13-27.	0.9	6
24	Physical mixture of a cyclic lipopeptide vaccine induced high titres of opsonic lgG antibodies against group A streptococcus. Biomaterials Science, 2021, 10, 281-293.	5 . 4	5
25	Synthesis and Characterization of Bradykinin Derivatives Based on a \hat{l}^2 -Cyclodextrin Core. Australian Journal of Chemistry, 2016, 69, 328.	0.9	4
26	Developing an Effective Glycanâ€Based Vaccine for <i>Streptococcus Pyogenes</i> . Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
27	Improved Fmoc Synthesis of Bradykinin. Protein and Peptide Letters, 2011, 18, 952-955.	0.9	2
28	Nanocarrier-based vaccine delivery systems for synthetic peptide vaccines., 2021,, 509-535.		2
29	Structure-activity relationship of lipid, cyclic peptide and antigen rearrangement of physically mixed vaccines. International Journal of Pharmaceutics, 2022, 617, 121614.	5. 2	1
30	Frontispiece: An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry - A European Journal, 2017, 23, .	3.3	0
31	Developing an Effective Glycanâ€Based Vaccine for Streptococcus Pyogenes. Angewandte Chemie, 0, , .	2.0	0