Chenlong Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hard Carbon Derived from Graphite Anode by Mechanochemistry and the Enhanced Lithiumâ€lon Storage Performance. ChemElectroChem, 2022, 9, .	3.4	9
2	"Quasi-Zero-Strain―TiO _{2–<i>x</i>} as an Ultra-Long-Life Anode for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1305-1312.	5.1	11
3	A Dualâ€Functional Titanium Nitride Chloride Layered Matrix with Facile Lithiumâ€ion Diffusion Path and Decoupled Electron Transport as Highâ€Capacity Anodes. Advanced Functional Materials, 2022, 32, .	14.9	8
4	Rodâ€Like SnO ₂ /SnS Mosaics for Reversible Large apacity Liâ€lon Storage. ChemElectroChem, 2022, 9, .	3.4	1
5	Tailoring Ultrafast and High apacity Sodium Storage via Bindingâ€Energyâ€Driven Atomic Scissors. Advanced Materials, 2022, 34, e2200863.	21.0	25
6	Proton-insertion-pseudocapacitance of tungsten bronze tunnel structure enhanced by transition metal ion anchoring. Nanoscale, 2021, 13, 16790-16798.	5.6	5
7	ZnOâ€Templated Selenized and Phosphorized Cobaltâ€Nickel Oxide Microcubes as Rapid Alkaline Water Oxidation Electrocatalysts. Chemistry - A European Journal, 2020, 26, 1306-1313.	3.3	1
8	Rutheniumâ€Doped Cobalt–Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer. Small, 2020, 16, e1905328.	10.0	80
9	Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction. Dalton Transactions, 2020, 49, 1398-1402.	3.3	9
10	Sulfur-terminated tin oxides for durable, highly reversible storage of large-capacity lithium. Journal of Materials Chemistry A, 2020, 8, 626-631.	10.3	11
11	Orthorhombic Nb2O5- for Durable High-Rate Anode of Li-Ion Batteries. IScience, 2020, 23, 100767.	4.1	39
12	Recent progress and perspectives of defective oxide anode materials for advanced lithium ion battery. EnergyChem, 2020, 2, 100045.	19.1	48
13	Co _{5.47} N loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn–air battery. Nanoscale, 2020, 12, 6089-6095.	5.6	27
14	Spherical Sacrificial ZnO Template–Derived Hybrid Ni/Co 3 O 4 Cubes as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Energy Technology, 2020, 8, 1901310.	3.8	6
15	Highly Hydroxylated Porous Nanozirconia for Complete Trace Cr(VI) Removal. ACS Applied Nano Materials, 2020, 3, 3315-3322.	5.0	12
16	Porous NiCo ₂ S ₄ /Co ₉ S ₈ Microcubes Templated by Sacrificial ZnO Spheres as an Efficient Bifunctional Oxygen Electrocatalyst. Advanced Sustainable Systems, 2019, 3, 1800167.	5.3	20
17	Charge-Transfer-Promoted High Oxygen Evolution Activity of Co@Co ₉ S ₈ Core〓Shell Nanochains. ACS Applied Materials & Interfaces, 2018, 10, 11565-11571.	8.0	46
18	Oxygen Evolution Activity of Co–Ni Nanochain Alloys: Promotion by Electron Injection. Chemistry - A European Journal, 2018, 24, 3707-3711.	3.3	12

CHENLONG DONG

#	Article	IF	CITATIONS
19	Observation of High Capacitance from Molecular Gd@C ₈₂ in Aqueous Electrolyte Derived from Energy‣evel Matching with Proton. Advanced Materials Interfaces, 2018, 5, 1800240.	3.7	5
20	Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. Catalysis Science and Technology, 2018, 8, 2427-2433.	4.1	19
21	Efficient Co@CoP _x core–shell nanochains catalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1844-1848.	6.0	9
22	Boron Embedded in Metal Iron Matrix as a Novel Anode Material of Excellent Performance. Advanced Materials, 2018, 30, e1801409.	21.0	35
23	Controlled Phase Evolution from Co Nanochains to CoO Nanocubes and Their Application as OER Catalysts. ACS Energy Letters, 2017, 2, 1208-1213.	17.4	125
24	Hierarchical Ni/NiTiO ₃ derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24767-24774.	10.3	44
25	Template-free assembling Ni nanoparticles to a 3D hierarchical structure for superior performance supercapacitors. RSC Advances, 2016, 6, 29519-29523.	3.6	4
26	Co nanoparticles embedded in a 3D CoO matrix for electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 38515-38520.	3.6	26
27	In situ grown Nb ₄ N ₅ nanocrystal on nitrogen-doped graphene as a novel anode for lithium ionÂbattery. RSC Advances, 2016, 6, 81290-81295.	3.6	39
28	Ti ³⁺ -Promoted High Oxygen-Reduction Activity of Pd Nanodots Supported by Black Titania Nanobelts. ACS Applied Materials & Interfaces, 2016, 8, 27654-27660.	8.0	50
29	Rational design of cobalt–chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2016, 4, 11292-11298.	10.3	191
30	Complexâ€derived Fe 2 N Anchored on Conductive Fewâ€layer Graphene for Electrocatalytic Oxygen Reduction Reaction. ChemNanoMat, 0, , .	2.8	0