Oliver M Steinmetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/68147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasticity of TH17 cells in Peyer's patches is responsible for the induction of T cell–dependent IgA responses. Nature Immunology, 2013, 14, 372-379.	14.5	429
2	The IL-23/Th17 Axis Contributes to Renal Injury in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 969-979.	6.1	205
3	CCR6 Recruits Regulatory T Cells and Th17 Cells to the Kidney in Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 974-985.	6.1	159
4	A Mechanism for Cancer-Associated Membranous Nephropathy. New England Journal of Medicine, 2016, 374, 1995-1996.	27.0	158
5	Th17 Cells Promote Autoimmune Anti-Myeloperoxidase Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 925-931.	6.1	150
6	CXCR3 Mediates Renal Th1 and Th17 Immune Response in Murine Lupus Nephritis. Journal of Immunology, 2009, 183, 4693-4704.	0.8	149
7	Autoimmune Renal Disease Is Exacerbated by S1P-Receptor-1-Dependent Intestinal Th17 Cell Migration to the Kidney. Immunity, 2016, 45, 1078-1092.	14.3	149
8	Th1 and Th17 Cells Induce Proliferative Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2518-2524.	6.1	147
9	IL-6 Controls the Innate Immune Response against <i>Listeria monocytogenes</i> via Classical IL-6 Signaling. Journal of Immunology, 2013, 190, 703-711.	0.8	140
10	The Th17 immune response in renal inflammation. Kidney International, 2010, 77, 1070-1075.	5.2	139
11	TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. Journal of Autoimmunity, 2010, 35, 291-298.	6.5	109
12	Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney International, 2008, 74, 448-457.	5.2	106
13	CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 55-66.	6.1	105
14	Chemokine Receptor CXCR3 Mediates T Cell Recruitment and Tissue Injury in Nephrotoxic Nephritis in Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 2071-2084.	6.1	89
15	Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. Kidney International, 2012, 82, 72-83.	5.2	84
16	Function of the Th17/Interleukinâ€17A Immune Response in Murine Lupus Nephritis. Arthritis and Rheumatology, 2015, 67, 475-487.	5.6	83
17	The Th17-Defining Transcription Factor RORγt Promotes Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2011, 22, 472-483.	6.1	78
18	CXCR3+ Regulatory T Cells Control TH1 Responses in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 1933-1942.	6.1	72

OLIVER M STEINMETZ

#	Article	IF	CITATIONS
19	Stat3 Programs Th17-Specific Regulatory T Cells to Control GN. Journal of the American Society of Nephrology: JASN, 2014, 25, 1291-1302.	6.1	68
20	Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney International, 2016, 89, 158-166.	5.2	67
21	Inflammation-Induced IL-6 Functions as a Natural Brake on Macrophages and Limits GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 1597-1607.	6.1	66
22	CCR5 Deficiency Aggravates Crescentic Glomerulonephritis in Mice. Journal of Immunology, 2008, 181, 6546-6556.	0.8	55
23	RORγt expression in Tregs promotes systemic lupus erythematosus via IL-17 secretion, alteration of Treg phenotype and suppression of Th2 responses. Clinical and Experimental Immunology, 2017, 188, 63-78.	2.6	55
24	Chemokines and B cells in renal inflammation and allograft rejection. Frontiers in Bioscience - Scholar, 2009, S1, 13-22.	2.1	52
25	Kidney Diseases and Chemokines. Current Drug Targets, 2006, 7, 65-80.	2.1	51
26	IL-17C/IL-17 Receptor E Signaling in CD4+ T Cells Promotes TH17 Cell-Driven Glomerular Inflammation. Journal of the American Society of Nephrology: JASN, 2018, 29, 1210-1222.	6.1	50
27	RORγt+Foxp3+ Cells are an Independent Bifunctional Regulatory T Cell Lineage and Mediate Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 454-465.	6.1	49
28	IL-17F Promotes Tissue Injury in Autoimmune Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2016, 27, 3666-3677.	6.1	45
29	Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. Clinical and Experimental Immunology, 2014, 176, 341-350.	2.6	41
30	IL-10 Receptor Signaling Empowers Regulatory T Cells to Control Th17 Responses and Protect from GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 1825-1837.	6.1	41
31	T-Bet Enhances Regulatory T Cell Fitness and Directs Control of Th1 Responses in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 185-196.	6.1	39
32	A Novel Role for IL-6 Receptor Classic Signaling: Induction of RORÎ ³ t+Foxp3+ Tregs with Enhanced Suppressive Capacity. Journal of the American Society of Nephrology: JASN, 2019, 30, 1439-1453.	6.1	37
33	Bevacizumab-associated glomerular microangiopathy. Modern Pathology, 2019, 32, 684-700.	5.5	37
34	Plasticity of Th17 Cells in Autoimmune Kidney Diseases. Journal of Immunology, 2016, 197, 449-457.	0.8	31
35	Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Critical Care, 2018, 22, 25.	5.8	28
36	CD4 ⁺ T Cell Fate in Glomerulonephritis: A Tale of Th1, Th17, and Novel Treg Subtypes. Mediators of Inflammation, 2016, 2016, 1-9.	3.0	27

OLIVER M STEINMETZ

#	Article	IF	CITATIONS
37	Population pharmacokinetics and dosing simulations of ceftazidime in critically ill patients receiving sustained low-efficiency dialysis. Journal of Antimicrobial Chemotherapy, 2017, 72, 1433-1440.	3.0	20
38	The role of Treg subtypes in glomerulonephritis. Cell and Tissue Research, 2021, 385, 293-304.	2.9	18
39	Control of Listeria monocytogenes infection requires classical IL-6 signaling in myeloid cells. PLoS ONE, 2018, 13, e0203395.	2.5	16
40	Amphiregulin Aggravates Glomerulonephritis via Recruitment and Activation of Myeloid Cells. Journal of the American Society of Nephrology: JASN, 2020, 31, 1996-2012.	6.1	14
41	Staying on Top of Things Right from the Start: The Obsessive-Compulsive Disorder of Regulatory T Cells. Journal of the American Society of Nephrology: JASN, 2010, 21, 6-7.	6.1	12
42	Antigen Cross-Presentation by Murine Proximal Tubular Epithelial Cells Induces Cytotoxic and Inflammatory CD8+ T Cells. Cells, 2022, 11, 1510.	4.1	6
43	Bâ€cellâ€derived ILâ€10 does not vitally contribute to the clinical course of glomerulonephritis. European Journal of Immunology, 2014, 44, 683-693.	2.9	5
44	The Amphiregulin/EGFR axis protects from lupus nephritis via downregulation of pathogenic CD4+ T helper cell responses. Journal of Autoimmunity, 2022, 129, 102829.	6.5	5
45	Neutralization of IL-6 inhibits formation of autoreactive TH17 cells but does not prevent loss of renal function in experimental autoimmune glomerulonephritis. Immunology Letters, 2021, 236, 51-60.	2.5	4
46	Lack of Evidence for an Association between Previous HEV Genotype-3 Exposure and Glomerulonephritis in General. Pathogens, 2022, 11, 18.	2.8	4
47	Leishmania infantum reactivation with secondary IgA nephropathy. Journal of Travel Medicine, 2022, , .	3.0	1
48	The Authors Reply. Kidney International, 2016, 90, 222-223.	5.2	0